From Concept to Implementation: The Data-Centric Development Process for AI in Industry

被引:8
|
作者
Luley, Paul-Philipp [1 ]
Deriu, Jan M. [1 ]
Yan, Peng [1 ,2 ,3 ]
Schatte, Gerrit A. [4 ]
Stadelmann, Thilo [1 ,5 ,6 ]
机构
[1] ZHAW Sch Engn, Ctr Artificial Intelligence, Winterthur, Switzerland
[2] Swiss Fed Inst Technol, Inst Neuroinformat, Zurich, Switzerland
[3] Univ Zurich, Zurich, Switzerland
[4] Kistler Instrumente AG, Innovat Lab, Winterthur, Switzerland
[5] European Ctr Living Technol ECLT, Venice, Italy
[6] ECLT European Ctr Living Technol, Venice, Italy
关键词
MLOps; ML pipeline; data preparation; ARTIFICIAL-INTELLIGENCE; IMPACT; SIZE;
D O I
10.1109/SDS57534.2023.00017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We examine the paradigm of data-centric artificial intelligence (DCAI) as a solution to the obstacles that small and medium-sized enterprises (SMEs) face in adopting AI. While the prevalent model-centric approach emphasizes collecting large amounts of data, SMEs often suffer from small datasets, data drift, and sparse ML knowledge, which hinders them from implementing AI. DCAI, on the other hand, emphasizes to systematically engineer the data used to build an AI system. Our contribution is to provide a concrete, transferable implementation of a DCAI development process geared towards industrial application, specifically in machining and manufacturing, and demonstrate how it enhances data quality by fostering collaboration between domain experts and ML engineers. This added value can place AI at the disposal of more SMEs. We provide the necessary background for practitioners to follow the rationale behind DCAI and successfully deploy the provided process template.
引用
收藏
页码:73 / 76
页数:4
相关论文
共 50 条
  • [1] Data-Centric AI
    Malerba, Donato
    Pasquadibisceglie, Vincenzo
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024,
  • [2] DataPerf: Benchmarks for Data-Centric AI Development
    Mazumder, Mark
    Banbury, Colby
    Yao, Xiaozhe
    Karlas, Bojan
    Rojas, William Gaviria
    Diamos, Sudnya
    Diamos, Greg
    He, Lynn
    Parrish, Alicia
    Kirk, Hannah Rose
    Quaye, Jessica
    Rastogi, Charvi
    Kiela, Douwe
    Jurado, David
    Kanter, David
    Mosquera, Rafael
    Ciro, Juan
    Aroyo, Lora
    Acun, Bilge
    Chen, Lingjiao
    Raje, Mehul Smriti
    Bartolo, Max
    Eyuboglu, Sabri
    Ghorbani, Amirata
    Goodman, Emmett
    Inel, Oana
    Kane, Tariq
    Kirkpatrick, Christine R.
    Kuo, Tzu-Sheng
    Mueller, Jonas
    Thrush, Tristan
    Vanschoren, Joaquin
    Warren, Margaret
    Williams, Adina
    Yeung, Serena
    Ardalani, Newsha
    Paritosh, Praveen
    Zhang, Ce
    Zou, James
    Wu, Carole-Jean
    Coleman, Cody
    Ng, Andrew
    Mattson, Peter
    Reddi, Vijay Janapa
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] The Principles of Data-Centric AI
    Jarrahi, Mohammad Hossein
    Memariani, Ali
    Guha, Shion
    [J]. COMMUNICATIONS OF THE ACM, 2023, 66 (08) : 84 - 92
  • [4] Data-centric AI: Perspectives and Challenges
    Zha, Daochen
    Bhat, Zaid Pervaiz
    Lai, Kwei-Herng
    Yang, Fan
    Hu, Xia
    [J]. PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 945 - 948
  • [5] Opportunities and Challenges in Data-Centric AI
    Kumar, Sushant
    Datta, Sumit
    Singh, Vishakha
    Singh, Sanjay Kumar
    Sharma, Ritesh
    [J]. IEEE ACCESS, 2024, 12 : 33173 - 33189
  • [6] dcbench: A Benchmark for Data-Centric AI Systems
    Eyuboglu, Sabri
    Karlas, Bojan
    Re, Christopher
    Zhang, Ce
    Zou, James
    [J]. PROCEEDINGS OF THE 6TH WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM 2022, 2022,
  • [7] Potential Impact of Data-Centric AI on Society
    Kumar, Sushant
    Sharma, Ritesh
    Singh, Vishakha
    Tiwari, Shrikant
    Singh, Sanjay Kumar
    Datta, Sumit
    [J]. IEEE TECHNOLOGY AND SOCIETY MAGAZINE, 2023, 42 (03) : 98 - 107
  • [8] Data-Centric AI for Healthcare Fraud Detection
    Johnson J.M.
    Khoshgoftaar T.M.
    [J]. SN Computer Science, 4 (4)
  • [9] Data-centric AI: Techniques and Future Perspectives
    Zha, Daochen
    Lai, Kwei-Herng
    Yang, Fan
    Zou, Na
    Gao, Huiji
    Hu, Xia
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5839 - 5840
  • [10] Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions
    Hamid, Oussama H.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):