Machine learning methods for predicting the key metabolic parameters of Halomonas elongata DSM 2581 T

被引:1
|
作者
Lai, Guanxue [1 ]
Yu, Junxiong [2 ]
Wang, Jing [3 ]
Li, Weihua [1 ]
Liu, Guixia [1 ]
Wang, Zejian [2 ]
Guo, Meijin [2 ]
Tang, Yun [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Frontiers Sci Ctr Optogenet Tech Cell Met, Sch Pharm, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Dept Chem Engn Energy Resources, Shanghai 200237, Peoples R China
关键词
Halomonas elongata DSM 2581( T); Machine learning; Fermentation kinetics; Feature engineering; Predictive analytics; SOFT-SENSOR; TRANSPORTER TEAABC; MODEL; ECTOINE; HYDROXYECTOINE; KINETICS; GROWTH;
D O I
10.1007/s00253-023-12633-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ectoine is generally produced by the fermentation process of Halomonas elongata DSM 2581( T), which is one of the primary industrial ectoine production techniques. To effectively monitor and control the fermentation process, the important parameters require accurate real-time measurement. However, for ectoine fermentation, three critical parameters (cell optical density, glucose, and product concentration) cannot be measured conveniently in real-time due to time variation, strong coupling, and other constraints. As a result, our work effectively created a series of hybrid models to predict the values of these three parameters incorporating both fermentation kinetics and machine learning approaches. Compared with the traditional machine learning models, our models solve the problem of insufficient data which is common in fermentation. In addition, a simple kinetic modeling is only applicable to specific physical conditions, so different physical conditions require refitting the function, which is tedious to operate. However, our models also overcome this limitation. In this work, we compared different hybrid models based on 5 feature engineering methods, 11 machine-learning approaches, and 2 kinetic models. The best models for predicting three key parameters, respectively, are as follows: CORR-Ensemble (R-2: 0.983 & PLUSMN; 0.0, RMSE: 0.086 & PLUSMN; 0.0, MAE: 0.07 & PLUSMN; 0.0), SBE-Ensemble (R-2: 0.972 & PLUSMN; 0.0, RMSE: 0.127 & PLUSMN; 0.0, MAE: 0.078 & PLUSMN; 0.0), and SBE-Ensemble (R-2:0.98 & PLUSMN; 0.0, RMSE: 0.023 & PLUSMN; 0.001, MAE: 0.018 & PLUSMN; 0.001). To verify the universality and stability of constructed models, we have done an experimental verification, and its results showed that our proposed models have excellent performance.
引用
收藏
页码:5351 / 5365
页数:15
相关论文
共 50 条
  • [1] Machine learning methods for predicting the key metabolic parameters of Halomonas elongata DSM 2581 T
    Guanxue Lai
    Junxiong Yu
    Jing Wang
    Weihua Li
    Guixia Liu
    Zejian Wang
    Meijin Guo
    Yun Tang
    Applied Microbiology and Biotechnology, 2023, 107 : 5351 - 5365
  • [2] Revision and reannotation of the Halomonas elongata DSM 2581T genome
    Pfeiffer, Friedhelm
    Bagyan, Irina
    Alfaro-Espinoza, Gabriela
    Zamora-Lagos, Maria-A.
    Habermann, Bianca
    Marin-Sanguino, Alberto
    Oesterhelt, Dieter
    Kunte, Hans J.
    MICROBIOLOGYOPEN, 2017, 6 (04):
  • [3] Physiological metabolic topology analysis of Halomonas elongata DSM 2581T in response to sodium chloride stress
    Yu, Junxiong
    Wang, Zejian
    Wang, Jing
    Mohisn, Ali
    Liu, Hao
    Zhang, Yue
    Zhuang, Yingping
    Guo, Meijin
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (12) : 3509 - 3525
  • [4] A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T
    Schwibbert, Karin
    Marin-Sanguino, Alberto
    Bagyan, Irina
    Heidrich, Gabriele
    Lentzen, Georg
    Seitz, Harald
    Rampp, Markus
    Schuster, Stephan C.
    Klenk, Hans-Peter
    Pfeiffer, Friedhelm
    Oesterhelt, Dieter
    Kunte, Hans Joerg
    ENVIRONMENTAL MICROBIOLOGY, 2011, 13 (08) : 1973 - 1994
  • [5] Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells
    Slim Abdelkafi
    Marc Labat
    Zouhaier Ben Ali Gam
    Jean Lorquin
    Laurence Casalot
    Sami Sayadi
    World Journal of Microbiology and Biotechnology, 2008, 24 : 675 - 680
  • [6] Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells
    Abdelkafi, Slim
    Labat, Marc
    Gam, Zouhaier Ben Ali
    Lorquin, Jean
    Casalot, Laurence
    Sayadi, Sami
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2008, 24 (05): : 675 - 680
  • [7] Structure and Function of the Universal Stress Protein TeaD and Its Role in Regulating the Ectoine Transporter TeaABC of Halomonas elongata DSM 2581T
    Schweikhard, Eva S.
    Kuhlmann, Sonja I.
    Kunte, Hans-Joerg
    Grammann, Katrin
    Ziegler, Christine M.
    BIOCHEMISTRY, 2010, 49 (10) : 2194 - 2204
  • [8] Mechanical Evaluation of Solvent Casted Poly(3-hydroxybutyrate) Films Derived from the Storage Polyesters Produced by Halomonas elongata DSM 2581T
    Adorján Cristea
    Marius Pustan
    Corina Bîrleanu
    Cristian Dudescu
    Călin Gabriel Floare
    Andreea-Melisa Tripon
    Horia Leonard Banciu
    Journal of Polymers and the Environment, 2022, 30 : 424 - 430
  • [9] Mechanical Evaluation of Solvent Casted Poly(3-hydroxybutyrate) Films Derived from the Storage Polyesters Produced by Halomonas elongata DSM 2581T
    Cristea, Adorjan
    Pustan, Marius
    Birleanu, Corina
    Dudescu, Cristian
    Floare, Calin Gabriel
    Tripon, Andreea-Melisa
    Banciu, Horia Leonard
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2022, 30 (01) : 424 - 430
  • [10] Characterization of polyhydroxyalkanoate synthases from Halomonas sp. O-1 and Halomonas elongata DSM2581: Site-directed mutagenesis and recombinant expression
    Ilham, Mulyana
    Nakanomori, Satoko
    Kihara, Takahiro
    Hokamura, Ayaka
    Matsusaki, Hiromi
    Tsuge, Takeharu
    Mizuno, Kouhei
    POLYMER DEGRADATION AND STABILITY, 2014, 109 : 416 - 423