Noble-Metal-Free, Polarity-Switchable IGZO Schottky Barrier Diodes

被引:1
|
作者
Li, Yuzhi [1 ]
Zhou, Yue [1 ]
Guo, Chan [1 ]
Zou, Shenghan [1 ]
Lan, Linfeng [2 ]
Gong, Zheng [1 ]
机构
[1] Guangdong Acad Sci, Inst Semicond, Guangzhou 510650, Peoples R China
[2] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Indium-gallium-zinc oxide (IGZO); metal oxide (MO); Schottky barrier diode (SBD); switchable polarity; OXIDE; TEMPERATURE; CAPACITANCE;
D O I
10.1109/TED.2023.3267755
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, noble-metal-free, polarityswitchable indium-gallium-zinc oxide (IGZO) Schottky barrier diodes (SBDs) with a vertically stacked structure of copper (Cu)/AlOx/IGZO/indium-tin oxide (ITO) were demonstrated for the first time. The polarity of the SBDs can be manipulated through a simple postannealing process in N-2. Without annealing, the as-fabricated IGZO SBD works in a negative operation mode (i.e., the dominating current flow direction is from the bottom ITO electrode to the top Cu electrode). The optimized SBD working in the negative mode exhibits excellent electrical properties with a rectification ratio of 2.12 x 10(6), a Schottky barrier height of 0.87 eV, and an ideality factor of 1.26. After annealing in N-2, the IGZO SBD switches to a positive operation mode. Through optimization, the positive SBD exhibits a rectification ratio of 4.24 x 10(5), a Schottky barrier height of 0.83 eV, and an ideality factor of 1.43. The mechanism of polarity inversion behavior for the IGZO SBDs was discussed in detail by taking the Cu diffusion and contact modification via the AlOx inserting layer into account. This work sheds light on the development of noble-metal-free metal oxide (MO) SBDs with controllable polarities and the future integration of MO SBDs with other electron devices.
引用
收藏
页码:3057 / 3063
页数:7
相关论文
共 50 条
  • [1] Schottky barrier diodes fabricated with metal oxides AgOx/IGZO
    Santana, L. A.
    Resendiz, L. M.
    Diaz, A. I.
    Hernandez-Cuevas, F. J.
    Aleman, M.
    Hernandez-Como, N.
    MICROELECTRONIC ENGINEERING, 2020, 220
  • [2] Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications
    Pereira, Maria
    Deuermeier, Jonas
    Nogueira, Ricardo
    Carvalho, Patricia Almeida
    Martins, Rodrigo
    Fortunato, Elvira
    Kiazadeh, Asal
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (10):
  • [3] Noble-Metal-Free Electrocatalysis Preface
    Zhang, Tierui
    Wang, Shuangyin
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (07)
  • [4] Noble-Metal-Free Electrocatalysts for Oxygen Evolution
    Lyu, Fenglei
    Wang, Qingfa
    Choi, Sung Mook
    Yin, Yadong
    SMALL, 2019, 15 (01)
  • [5] Noble-Metal-Free Doped Carbon Nanomaterial Electrocatalysts
    Sideri, Ioanna K.
    Tagmatarchis, Nikos
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (67) : 15397 - 15415
  • [6] METAL POLYACETYLENE SCHOTTKY-BARRIER DIODES
    KANICKI, J
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1984, 105 (1-4): : 203 - 217
  • [7] A Noble-Metal-Free System for Photodriven Catalytic Proton Reduction
    van den Bosch, Bart
    Chen, Hung-Cheng
    van der Vlugt, Jarl Ivar
    Brouwer, Albert M.
    Reek, Joost N. H.
    CHEMSUSCHEM, 2013, 6 (05) : 790 - 793
  • [8] Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors
    Xiangchao Ma
    Ying Dai
    Lin Yu
    Baibiao Huang
    Scientific Reports, 4
  • [9] Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors
    Ma, Xiangchao
    Dai, Ying
    Yu, Lin
    Huang, Baibiao
    SCIENTIFIC REPORTS, 2014, 4
  • [10] Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion
    Lu, Haijiao
    Tournet, Julie
    Dastafkan, Kamran
    Liu, Yun
    Ng, Yun Hau
    Karuturi, Siva Krishna
    Zhao, Chuan
    Yin, Zongyou
    CHEMICAL REVIEWS, 2021, 121 (17) : 10271 - 10366