A Study on the Optimization of the Coil Defect Detection Model Based on Deep Learning

被引:3
|
作者
Noh, Chun-Myoung [1 ]
Jang, Jun-Gyo [1 ]
Kim, Sung-Soo [2 ]
Lee, Soon-Sup [1 ]
Shin, Sung-Chul [3 ]
Lee, Jae-Chul [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Ocean Syst Engn, Tongyeong 53064, South Korea
[2] ADIA Lab, Busan 48059, South Korea
[3] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, Busan 46241, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
quality inspection system; deep learning; model optimization;
D O I
10.3390/app13085200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With increasing interest in smart factories, considerable attention has been paid to the development of deep-learning-based quality inspection systems. Deep-learning-based quality inspection helps productivity improvements by solving the limitations of existing quality inspection methods (e.g., an inspector's human errors, various defects, and so on). In this study, we propose an optimized YOLO (You Only Look Once) v5-based model for inspecting small coils. Performance improvement techniques (model structure modification, model scaling, pruning) are applied for model optimization. Furthermore, the model is prepared by adding data applied with histogram equalization to improve model performance. Compared with the base model, the proposed YOLOv5 model takes nearly half the time for coil inspection and improves the accuracy of inspection by up to approximately 1.6%, thereby enhancing the reliability and productivity of the final products.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] PCB Defect Detection Based on Improved Deep Learning Model
    Tseng, Shih-Hsien
    Kuo, Chi
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (11)
  • [2] Study of Resin Zipper Defect Detection Algorithm Based on Deep Learning
    Sun, Chuanzhu
    Li, Bin
    Fu, Chaoxing
    2022 WRC SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION, WRC SARA, 2022, : 140 - 146
  • [3] A deep learning model for steel surface defect detection
    Zhaoguo Li
    Xiumei Wei
    M. Hassaballah
    Yihong Li
    Xuesong Jiang
    Complex & Intelligent Systems, 2024, 10 : 885 - 897
  • [4] Ensemble-based deep learning model for welding defect detection and classification
    Vasan, Vinod
    Sridharan, Naveen Venkatesh
    Balasundaram, Rebecca Jeyavadhanam
    Vaithiyanathan, Sugumaran
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [5] Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels
    Prabhakaran, S.
    Uthra, R. Annie
    Preetharoselyn, J.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (03): : 2683 - 2700
  • [6] A deep learning model for steel surface defect detection
    Li, Zhaoguo
    Wei, Xiumei
    Hassaballah, M.
    Li, Yihong
    Jiang, Xuesong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 885 - 897
  • [7] Study on the Optimization of Eddy Current Testing Coil and the Defect Detection Sensitivity
    Zhou, H. T.
    Hou, K.
    Pan, H. L.
    Chen, J. J.
    Wang, Q. M.
    PRESSURE VESSEL TECHNOLOGY: PREPARING FOR THE FUTURE, 2015, 130 : 1649 - 1657
  • [8] Industrial Laser Welding Defect Detection and Image Defect Recognition Based on Deep Learning Model Developed
    Deng, Honggui
    Cheng, Yu
    Feng, Yuxin
    Xiang, Junjiang
    SYMMETRY-BASEL, 2021, 13 (09):
  • [9] Summary of insulator defect detection based on deep learning
    Liu, Jun
    Hu, Mingming
    Dong, Junyuan
    Lu, Xu
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 224
  • [10] Source Code Defect Detection Based on Deep Learning
    Wang X.-M.
    Zhang T.
    Xin W.
    Hou C.-Y.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (11): : 1155 - 1159