Fractional-order integral terminal sliding-mode control for perturbed nonlinear systems with application to quadrotors

被引:6
|
作者
Labbadi, Moussa [1 ,5 ]
Defoort, Michael [2 ]
Incremona, Gian Paolo [3 ]
Djemai, Mohamed [4 ]
机构
[1] Univ Grenoble Alpes, GIPSA Lab, CNRS, Grenoble INP, Grenoble, France
[2] Univ Polytech Hauts De france, INSA Hauts De france, LAMIH, CNRS,UMR 8201, Valenciennes, France
[3] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[4] ENSEA, QUARTZ Lab, EA 7393, Cergy 6 Ave Ponceau, Cergy, France
[5] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA lab, F-38000 Grenoble, France
关键词
chattering alleviation; FnT; fractional-order recursive integral terminal sliding mode; full-order sliding mode; reaching phase; uncertain systems;
D O I
10.1002/rnc.6608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a novel fractional-order recursive integral terminal sliding mode (FORITSM) control is proposed for nonlinear systems in the presence of external disturbances with unknown bounds. The proposed control approach provides an easy-to implement solution capable of zeroing the sliding variable in a finite-time (FnT) by adding a fractional-order command filter. Moreover, the reaching phase is eliminated, and FnT convergence of the system states is proved. The proposed technique has also a chattering alleviation property, which is beneficial for practical cases, as the control of quadrotor UAVs presented in the article. Finally, a simulation case study on a quadrotor system is illustrated to show the effectiveness of the proposed FORITSM control, also with respect to classical methods.
引用
收藏
页码:10278 / 10303
页数:26
相关论文
共 50 条
  • [1] Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems
    Dadras, Sara
    Momeni, Hamid Reza
    [J]. MECHATRONICS, 2013, 23 (07) : 880 - 887
  • [2] Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems
    Dadras, Sara
    Dadras, Soodeh
    Momeni, HamidReza
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (11):
  • [3] Fractional-order Terminal Sliding-mode Control of MIMO Systems With Unmatched Uncertainties
    Zhou, Ming-Hao
    Wei, Ke-Meng
    Feng, Yong
    Mu, Chao-Xu
    Su, Hong-Yu
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2224 - 2236
  • [4] Two methods for terminal sliding-mode synchronization of fractional-order nonlinear chaotic systems
    Mao, Beixing
    [J]. ASIAN JOURNAL OF CONTROL, 2021, 23 (04) : 1720 - 1727
  • [5] On the sliding-mode control of fractional-order nonlinear uncertain dynamics
    Jakovljevic, B.
    Pisano, A.
    Rapaic, M. R.
    Usai, E.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (04) : 782 - 798
  • [6] Fractional-order terminal sliding mode control for a class of underactuated nonlinear systems
    Cuong, Hoang Manh
    Lam, Nguyen Tung
    Dong, Hoang Quoc
    Van Trieu, Pham
    Tuan, Nguyen Huu
    Tuan, Le Anh
    [J]. 2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 703 - 706
  • [7] Fractional-Order Backstepping Sliding-Mode Control Based on Fractional-Order Nonlinear Disturbance Observer
    Delavari, Hadi
    Heydarinejad, Hamid
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (11):
  • [8] Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances
    Chen, Liping
    Wu, Ranchao
    He, Yigang
    Chai, Yi
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 51 - 58
  • [9] Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances
    Liping Chen
    Ranchao Wu
    Yigang He
    Yi Chai
    [J]. Nonlinear Dynamics, 2015, 80 : 51 - 58
  • [10] Fractional-Order Terminal Sliding-Mode Control for Buck DC/DC Converter
    Yang, Ningning
    Wu, Chaojun
    Jia, Rong
    Liu, Chongxin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016