Fractional-order integral terminal sliding-mode control for perturbed nonlinear systems with application to quadrotors

被引:12
|
作者
Labbadi, Moussa [1 ,5 ]
Defoort, Michael [2 ]
Incremona, Gian Paolo [3 ]
Djemai, Mohamed [4 ]
机构
[1] Univ Grenoble Alpes, GIPSA Lab, CNRS, Grenoble INP, Grenoble, France
[2] Univ Polytech Hauts De france, INSA Hauts De france, LAMIH, CNRS,UMR 8201, Valenciennes, France
[3] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
[4] ENSEA, QUARTZ Lab, EA 7393, Cergy 6 Ave Ponceau, Cergy, France
[5] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA lab, F-38000 Grenoble, France
关键词
chattering alleviation; FnT; fractional-order recursive integral terminal sliding mode; full-order sliding mode; reaching phase; uncertain systems;
D O I
10.1002/rnc.6608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a novel fractional-order recursive integral terminal sliding mode (FORITSM) control is proposed for nonlinear systems in the presence of external disturbances with unknown bounds. The proposed control approach provides an easy-to implement solution capable of zeroing the sliding variable in a finite-time (FnT) by adding a fractional-order command filter. Moreover, the reaching phase is eliminated, and FnT convergence of the system states is proved. The proposed technique has also a chattering alleviation property, which is beneficial for practical cases, as the control of quadrotor UAVs presented in the article. Finally, a simulation case study on a quadrotor system is illustrated to show the effectiveness of the proposed FORITSM control, also with respect to classical methods.
引用
收藏
页码:10278 / 10303
页数:26
相关论文
共 50 条
  • [1] Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems
    Dadras, Sara
    Momeni, Hamid Reza
    MECHATRONICS, 2013, 23 (07) : 880 - 887
  • [2] Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems
    Dadras, Sara
    Dadras, Soodeh
    Momeni, HamidReza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (11):
  • [3] Fractional-order Terminal Sliding-mode Control of MIMO Systems With Unmatched Uncertainties
    Zhou M.-H.
    Wei K.-M.
    Feng Y.
    Mu C.-X.
    Su H.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2224 - 2236
  • [4] Practical fractional-order terminal sliding-mode control for a class of continuous-time nonlinear systems
    Feliu-Talegon, Daniel
    Nekoo, Saeed Rafee
    Tapia, Raul
    Acosta, Jose angel
    Ollero, Anibal
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025,
  • [5] Two methods for terminal sliding-mode synchronization of fractional-order nonlinear chaotic systems
    Mao, Beixing
    ASIAN JOURNAL OF CONTROL, 2021, 23 (04) : 1720 - 1727
  • [6] On the sliding-mode control of fractional-order nonlinear uncertain dynamics
    Jakovljevic, B.
    Pisano, A.
    Rapaic, M. R.
    Usai, E.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (04) : 782 - 798
  • [7] Fractional-order terminal sliding mode control for a class of underactuated nonlinear systems
    Cuong, Hoang Manh
    Lam, Nguyen Tung
    Dong, Hoang Quoc
    Van Trieu, Pham
    Tuan, Nguyen Huu
    Tuan, Le Anh
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 703 - 706
  • [8] Fractional-Order Backstepping Sliding-Mode Control Based on Fractional-Order Nonlinear Disturbance Observer
    Delavari, Hadi
    Heydarinejad, Hamid
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (11):
  • [9] Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances
    Chen, Liping
    Wu, Ranchao
    He, Yigang
    Chai, Yi
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 51 - 58
  • [10] Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances
    Liping Chen
    Ranchao Wu
    Yigang He
    Yi Chai
    Nonlinear Dynamics, 2015, 80 : 51 - 58