Monitoring of surface deformation in mining area integrating SBAS InSAR and Logistic Function

被引:4
|
作者
Wang, Fengyun [1 ,2 ]
Tao, Qiuxiang [1 ,2 ]
Liu, Guolin [1 ,2 ]
Chen, Yang [1 ]
Han, Yu [3 ]
Guo, Zaijie [4 ]
Liu, Xiaoshuai [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, 579 Qianwangang Rd, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Demonstrat Ctr Expt Surveying & Mapping Educ, Qingdao, Peoples R China
[3] Qingdao Geotech Invest & Surveying Res Inst, 189 Shandong Rd, Qingdao, Peoples R China
[4] Jiangsu Coal Geol Survey Team, 3 Yaoxin Ave, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
SBAS InSAR; center dot Mining surface deformation; Entropy weight method; Logistic Function; Levenberg-Marquardt algorithm; SUBSIDENCE;
D O I
10.1007/s10661-023-12095-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
SBAS InSAR has long been used to monitor the mining surface deformation, and its research has been of great interest to researchers worldwide. For the unsatisfactory accuracy of SBAS InSAR-monitored mining surface deformation results, a new corrected model is proposed by integrating SBAS InSAR and Logistic Function. Firstly, the time series deformation results of the mining area were obtained by SBAS InSAR, and the variation law of the differences between SBAS InSAR- and leveling-monitored deformation values was statistically analyzed. Subsequently, the corrected model was constructed using the logistic linear regression analysis function and solved using the Levenberg-Marquardt algorithm.Finally, the corrected high-precision time series deformation results in the mining area were obtained. A mining area in Shandong Province of China was taken as the research object, and the practical application effect of the proposed corrected model was verified. Results showed that the Logistic Function could describe the variation law of the differences relatively accurately, and the corrected results were significantly better than the SBAS InSAR-monitored results, and the RMSEs of the corrected results were improved by 33-58%. The accuracy of SBAS InSAR-monitored mining surface deformation was effectively improved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Monitoring of surface deformation in mining area integrating SBAS InSAR and Logistic Function
    Fengyun Wang
    Qiuxiang Tao
    Guolin Liu
    Yang Chen
    Yu Han
    Zaijie Guo
    Xiaoshuai Liu
    Environmental Monitoring and Assessment, 2023, 195
  • [2] Monitoring and Prediction of Surface Subsidence in Mining Areas by Integrating SBAS-InSAR and ELM
    Gao N.
    Pu Q.
    Journal of Engineering Science and Technology Review, 2024, 17 (01) : 45 - 53
  • [3] MONITORING OF SURFACE SUBSIDENCE IN MINING AREA BASED ON IMPROVED SBAS-INSAR TECHNOLOGY
    He, Kuan
    Xu, Lin
    Zou, Youfeng
    Liu, Yuntong
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (06): : 5372 - 5379
  • [4] Deformation Monitoring in an Alpine Mining Area in the Tianshan Mountains Based on SBAS-InSAR Technology
    Du, Qingsong
    Li, Guoyu
    Zhou, Yu
    Chai, Mingtang
    Chen, Dun
    Qi, Shunshun
    Wu, Gang
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [5] Urban surface deformation monitoring and prediction by integrating SBAS-InSAR and Elman neural network
    Teng, Chaoqun
    Wang, Lei
    Jiang, Chuang
    SURVEY REVIEW, 2024, 56 (394) : 18 - 31
  • [6] Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE
    Zheng, Meinan
    Deng, Kazhong
    Fan, Hongdong
    Du, Sen
    REMOTE SENSING, 2018, 10 (09)
  • [7] A ConvLSTM Neural Network Model for Spatiotemporal Prediction of Mining Area Surface Deformation Based on SBAS-InSAR Monitoring Data
    Yao, Sheng
    He, Yi
    Zhang, Lifeng
    Yang, Wang
    Chen, Yi
    Sun, Qiang
    Zhao, Zhan'ao
    Cao, Shengpeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Monitoring and Assessment of SBAS-InSAR Deformation for Sustainable Development of Closed Mining Areas-a Case of Nanzhuang Mining Area
    Li, Zhen
    Tian, Zhongbin
    Wang, Bin
    Li, Weibing
    Chen, Qihao
    Zhang, Zhengjia
    IEEE ACCESS, 2023, 11 : 22935 - 22947
  • [9] Monitoring of Surface Subsidence of the Mining Area Based on SBAS
    Zhu, Yufeng
    Ding, Xiaoli
    Li, Zhiwei
    Luo, Yan
    JOURNAL OF COMPUTERS, 2014, 9 (05) : 1177 - 1184
  • [10] SURFACE SUBSIDENCE MONITORING IN GANZHOU AREA BASED ON SBAS-INSAR
    Li, Xinyi
    Zhou, Lv
    Ma, Jun
    Zhu, Zilin
    Li, Xin
    Huang, Ling
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 293 - 299