Does the Intraoperative Physiological Data Improve Machine Learning-Based Outcome Prediction in Cardiac Surgical Patients?

被引:0
|
作者
Meng, Lingzhong [1 ]
Han, Jiange [1 ]
Guo, Zhigang [1 ]
Lu, Liangfu [1 ]
Ma, Songnan [1 ]
Wu, Yubo [1 ]
Zhai, Wenqian [1 ]
机构
[1] Mayo Clin Rochester, Rochester, MN USA
来源
ANESTHESIA AND ANALGESIA | 2023年 / 136卷
关键词
D O I
暂无
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
引用
收藏
页码:848 / 849
页数:2
相关论文
共 50 条
  • [1] Machine learning-based prediction of intraoperative hypoxemia for pediatric patients
    Park, Jung-Bin
    Lee, Ho-Jong
    Yang, Hyun-Lim
    Kim, Eun-Hee
    Lee, Hyung-Chul
    Jung, Chul-Woo
    Kim, Hee-Soo
    PLOS ONE, 2023, 18 (03):
  • [2] A MACHINE LEARNING-BASED PREDICTION OF CARDIAC ARREST OUTCOME USING A LARGE MULTICENTER DATABASE
    Kim, Hanbiehn
    Hieu Nguyen
    Jin, Qingchu
    Tamby, Sharmila
    Romer, Tatiana Gelaf
    Sung, Eric
    Liu, Ran
    Joseph, Greenstein
    Winslow, Raimond
    Suarez, Jose
    Storm, Christian
    Stevens, Robert
    CRITICAL CARE MEDICINE, 2020, 48
  • [3] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Zanier, Olivier
    Zoli, Matteo
    Staartjes, Victor E.
    Guaraldi, Federica
    Asioli, Sofia
    Rustici, Arianna
    Picciola, Valentino Marino
    Pasquini, Ernesto
    Faustini-Fustini, Marco
    Erlic, Zoran
    Regli, Luca
    Mazzatenta, Diego
    Serra, Carlo
    ENDOCRINE, 2022, 75 (02) : 508 - 515
  • [4] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Olivier Zanier
    Matteo Zoli
    Victor E. Staartjes
    Federica Guaraldi
    Sofia Asioli
    Arianna Rustici
    Valentino Marino Picciola
    Ernesto Pasquini
    Marco Faustini-Fustini
    Zoran Erlic
    Luca Regli
    Diego Mazzatenta
    Carlo Serra
    Endocrine, 2022, 75 : 508 - 515
  • [5] Intraoperative Vital Parameters Improve the Accuracy of Machine Learning Based Prediction Model for Perioperative Stroke in Patients With Non Cardiac Surgery
    Oh, Mi-Young
    Jung, Young Mi
    Kim, Wonpyo
    Lee, Hyung-Chul
    Lim, Jaehyun
    Lee, Seung Mi
    CIRCULATION, 2022, 146
  • [6] Machine learning-based prediction of diabetic patients using blood routine data
    Li, Honghao
    Su, Dongqing
    Zhang, Xinpeng
    He, Yuanyuan
    Luo, Xu
    Xiong, Yuqiang
    Zou, Min
    Wei, Huiyan
    Wen, Shaoran
    Xi, Qilemuge
    Zuo, Yongchun
    Yang, Lei
    METHODS, 2024, 229 : 156 - 162
  • [7] Machine learning-based delirium prediction in surgical in-patients: a prospective validation study
    Jauk, Stefanie
    Kramer, Diether
    Sumerauer, Stefan
    Veeranki, Sai Pavan Kumar
    Schrempf, Michael
    Puchwein, Paul
    JAMIA OPEN, 2024, 7 (03)
  • [8] Can machine learning-based prediction of complications after paediatric cardiac surgery improve patient outcomes?
    Kim, Won Ho
    Ji, Sang-Hwan
    Jang, Young-Eun
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2020, 58 (02) : 400 - 400
  • [9] Development and validation of machine learning-based prediction model for outcome of cardiac arrest in intensive care units
    Ni, Peifeng
    Zhang, Sheng
    Zhang, Gensheng
    Zhang, Weidong
    Zhang, Hongwei
    Zhu, Ying
    Hu, Wei
    Diao, Mengyuan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] A Machine Learning-Based Prediction of Cardiac Arrest Outcome Using a Large Multi-Center Database
    Kim, Hanbiehn
    Hieu Nguyen
    Jin, Qingchu
    Tamby, Sharmila
    Romer, Tatiana Gelaf
    Sung, Eric
    Liu, Ran
    Greenstein, Joseph
    Winslow, Raimund
    Suarez, Jose I.
    Storm, Christian
    Stevens, Robert D.
    CIRCULATION, 2019, 140