A generalized thermal memory effect of Caputo-Fabrizio fractional integral on natural convection flow of hybrid nanofluid

被引:4
|
作者
Afzal, Usman [1 ]
Almutairi, Bander [2 ]
Shah, Nehad Ali [1 ]
Ullah, Saif [3 ]
Abdullah, Jae Dong [1 ]
Chung, Jae Dong [1 ]
机构
[1] Sejong Univ, Dept Mech Engn, Seoul 05006, South Korea
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 11期
关键词
Free convection; hybrid nanofluid; Caputo-Fabrizio fractional integral; Laplace transform; VISCOUS-FLUID; PLATE;
D O I
10.1142/S0217984924500866
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, the natural convective flow of hybrid nanofluid over the vertical plate has been examined. Cattaneo law of thermal flux is used to characterize thermal transport. The novel model for fractional constitutive equation is expressed by the time fractional Caputo-Fabrizio integral. The analytical solution of the generalized convective flow of viscous fluid over the vertical plate along generalized conditions is obtained by using the Laplace transform. Mathcad is used to determine numerically the influence of the physical and fractional parameters on the temperature and velocity field to depict the results graphically.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [2] A new fractional integral associated with the Caputo-Fabrizio fractional derivative
    Moumen Bekkouche, M.
    Guebbai, H.
    Kurulay, M.
    Benmahmoud, S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1277 - 1288
  • [3] Some Caputo-Fabrizio fractional integral inequalities with applications
    Qaisar, Shahid
    Munir, Arslan
    Naeem, Muhammad
    Budak, Huseyin
    FILOMAT, 2024, 38 (16) : 5905 - 5923
  • [4] Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model ID
    Saqib, Muhammad
    Ali, Farhad
    Khan, Ilyas
    Sheikh, Nadeem Ahmad
    Jan, Syed Aftab Alam
    Samiulhaq
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1849 - 1858
  • [5] PROPERTIES OF A NEW GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Jornet, Marc
    Nieto, Juan J.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3520 - 3538
  • [6] New Fractional Integral Inequalities Pertaining to Caputo-Fabrizio and Generalized Riemann-Liouville Fractional Integral Operators
    Tariq, Muhammad
    Alsalami, Omar Mutab
    Shaikh, Asif Ali
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    AXIOMS, 2022, 11 (11)
  • [7] On Some Fractional Integral Inequalities Involving Caputo-Fabrizio Integral Operator
    Chinchane, Vaijanath L.
    Nale, Asha B.
    Panchal, Satish K.
    Chesneau, Christophe
    AXIOMS, 2021, 10 (04)
  • [8] Application of Measure of Noncompactness On Integral Equations Involving Generalized Proportional Fractional and Caputo-Fabrizio Fractional Integrals
    Das, Anupam
    Hazarika, Bipan
    Parvanah, Vahid
    Mahato, Nihar Kumar
    FILOMAT, 2022, 36 (17) : 5885 - 5893
  • [9] Generalized Caputo-Fabrizio fractional operator: an application in image denoising
    Khan, A. M.
    Gaur, S.
    Suthar, D. L.
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [10] On Fractional Diffusion Equation with Caputo-Fabrizio Derivative and Memory Term
    Binh Duy Ho
    Van Kim Ho Thi
    Long Le Dinh
    Nguyen Hoang Luc
    Phuong Nguyen
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021