Poset Ramsey Number R(P, Qn). I. Complete Multipartite Posets

被引:0
|
作者
Winter, Christian [1 ]
机构
[1] Karlsruhe Inst Technol, Karlsruhe, Germany
关键词
Poset Ramsey; Boolean lattice; Complete multipartite poset; Induced subposet;
D O I
10.1007/s11083-023-09636-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A poset ( P ',<= P ') contains a copy of some other poset (P,<= P) if there is an injection f : P ' -> P where for every X, Y is an element of P, X <= P Y if and only if f ( X) = <=(P ') f(Y). For any posets P and Q, the poset Ramsey number R(P,Q) is the smallest integer N such that any blue/red coloring of a Boolean lattice of dimension N contains either a copy of P with all elements blue or a copy of Q with all elements red. A complete l-partite poset Kt(1),...,t(l) is a poset on Sigma(l)(i=1) t(i) elements, which are partitioned into l pairwise disjoint sets A(i) with |A(i)| = t(i), 1 <= i <= l , such that for any two X is an element of A(i) and Y is an element of A(j), X < Y if and only if i < j. In this paper we show that R(K-t1,..., t(l), Q(n)) <= n + (2+o(n)(1)) ln / log n.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条