Gauss-Newton With Preconditioned Conjugate Gradient Magnetotelluric Inversion for 3-D Axial Anisotropic Conductivities

被引:1
|
作者
Zhou, Junjun [1 ]
Bai, Ningbo [1 ]
Han, Bo [2 ]
Hu, Xiangyun [3 ]
Xiao, Tiaojie [4 ]
Huang, Guoshu [5 ]
Li, Jianping [6 ]
机构
[1] Henan Polytech Univ, Dept Phys & Elect Informat, Jiaozuo 454003, Peoples R China
[2] China Univ Geosci, Inst Geol Survey, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Inst Geol Survey, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[4] Natl Univ Def Technol, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[5] Huang Shanxi Inst Technol, Yangquan 045000, Peoples R China
[6] Guangzhou Marine Geol Survey, Guangzhou 511458, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic; Three-dimensional displays; Mathematical models; Conductivity; Solid modeling; Electric fields; Sensitivity; Axial anisotropic; Gauss-Newton (GN) inversion; magnetotelluric (MT); MODELING PROBLEMS; 3D; DECOMPOSITION; FIELDS;
D O I
10.1109/TGRS.2024.3367378
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a regularized inversion method for 3-D magnetotelluric (MT) data with axial anisotropic conductivities based on the edge-based finite element (FE) method. The Gauss-Newton (GN) approach is used to minimize the inversion objective function, including data misfit and regularization penalties, considering both structural complexity and anisotropic penalties. The most time-intensive task in the 3-D MT inversion process is solving the large sparse system of linear equations. To speed up the inversion calculation, a hybrid direct-iterative solver combined with a block-diagonal preconditioner that has not yet been applied in anisotropic inversion is developed to accelerate the solutions for the sparse linear system resulting from forward modeling and sensitivity computations. In each GN iteration, a preconditioned conjugate gradient (PCG) method is adopted to overcome the difficulty in the sensitivity matrix storage for the anisotropic scene and obtain a model update without explicitly calculating and storing the sensitivity matrix. Before the inversion test, we use a model to demonstrate that the hybrid solver is computationally beneficial in terms of memory usage and time spent when compared with the direct solver. The good convergence properties and efficiency of the Gauss-Newton with the conjugate gradient (GN-PCG) inversion scheme are demonstrated by two synthetic models and USArray data. The proposed inversion scheme can be an important supplement to existing anisotropic inversion algorithms and provide technical support for MT data interpretation.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] 3D Multiplicative Regularized Gauss-Newton Inversion
    Abubakar, Aria
    Liu, Jianguo
    Habashy, Tarek
    Zaslavsky, Mike
    Druskin, Vladimir
    Pan, Guangdong
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 240 - 243
  • [2] Accelerating Hessian-free Gauss-Newton full-waveform inversion via l-BFGS preconditioned conjugate-gradient algorithm
    Pan, Wenyong
    Innanen, Kristopher A.
    Liao, Wenyuan
    GEOPHYSICS, 2017, 82 (02) : R49 - R64
  • [3] An efficient decoupled 3-D axial anisotropic resistivity inversion for magnetotelluric data with OpenMP parallelization
    Thongyoy, Wisart
    Siripunvaraporn, Weerachai
    Amatayakul, Puwis
    Rung-Arunwan, Tawat
    Baba, Kiyoshi
    EARTH PLANETS AND SPACE, 2025, 77 (01):
  • [4] Optimal computation of 3-D similarity: Gauss-Newton vs. Gauss-Helmert
    Kanatani, Kenichi
    Niitsuma, Hirotaka
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4470 - 4483
  • [5] Novel Parameterization for Gauss-Newton Methods in 3-D Pose Graph Optimization
    Nasiri, Seyed-Mahdi
    Hosseini, Reshad
    Moradi, Hadi
    IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) : 780 - 797
  • [6] Frequency-domain acoustic-elastic coupled waveform inversion using the Gauss-Newton conjugate gradient method
    Bae, Ho Seuk
    Pyun, Sukjoon
    Chung, Wookeen
    Kang, Seung-Goo
    Shin, Changsoo
    GEOPHYSICAL PROSPECTING, 2012, 60 (03) : 413 - 432
  • [7] A compressed implicit Jacobian scheme for 3D regularized Gauss-Newton inversion
    Abubakar, Aria
    Li, Maokun
    Liu, Jianguo
    Pan, Guangdong
    Habashy, Tarek M.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 3067 - 3070
  • [8] 3-D Joint Inversion of Gravity and Magnetic Data Using Data-Space and Truncated Gauss-Newton Methods
    Zhang, Rongzhe
    Li, Tonglin
    Liu, Cai
    Huang, Xingguo
    Jensen, Kristian
    Sommer, Malte
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] 3-D time-domain Gauss-Newton full waveform inversion for near-surface site characterization
    Tran, Khiem T.
    Mirzanejad, Majid
    Mcvay, Michael
    Horhota, David
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (01) : 206 - 218
  • [10] Magnetotelluric axial anisotropic parallelized 3D inversion based on cross-gradient structural constraint
    Wang KunPeng
    Wang XuBen
    Cao Hui
    Lan Xing
    Duan ChangSheng
    Luo Wei
    Yuan JianLong
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (04): : 1305 - 1319