Precision spectroscopy of fast, hot, exotic isotopes using machine-learning-assisted event-by-event Doppler correction

被引:1
|
作者
Udrescu, S. M. [1 ]
Torres, D. A. [2 ]
Ruiz, R. F. Garcia [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Nacl Colombia, Dept Fis, Bogota 111321, Colombia
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
PROTON ELASTIC-SCATTERING; MOMENTUM SPECTROSCOPY; CHARGE-EXCHANGE; HALO STRUCTURE; RECOIL-ION; B-8; RADII; SLOW;
D O I
10.1103/PhysRevResearch.6.013128
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an experimental scheme for performing sensitive, high-precision laser spectroscopy studies on fast exotic isotopes. By inducing a stepwise resonant ionization of the atoms traveling inside an electric field and subsequently detecting the ion and the corresponding electron, time-, and position-sensitive measurements of the resulting particles can be performed. Using a mixture density network, we can leverage this information to predict the initial energy of individual atoms and thus apply a Doppler correction of the observed transition frequencies on an event-by-event basis. We conduct numerical simulations of the proposed experimental scheme and show that kHz-level uncertainties can be achieved for ion beams produced at extreme temperatures (>108 K), with energy spreads as large as 10 keV and nonuniform velocity distributions. The ability to perform in-flight spectroscopy, directly on highly energetic beams, offers unique opportunities to study short-lived isotopes with lifetimes in the millisecond range and below, produced in low quantities, in hot and highly contaminated environments, without the need for cooling techniques. Such species are of marked interest for nuclear structure, astrophysics, and new physics searches.
引用
收藏
页数:9
相关论文
共 6 条
  • [1] Towards fast machine-learning-assisted Bayesian posterior inference of microseismic event location and source mechanism
    Piras, D.
    Mancini, A. Spurio
    Ferreira, A. M. G.
    Joachimi, B.
    Hobson, M. P.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 232 (02) : 1219 - 1235
  • [2] Power Quality Event Detection Using a Fast Extreme Learning Machine
    Ucar, Ferhat
    Alcin, Omer F.
    Dandil, Besir
    Ata, Fikret
    ENERGIES, 2018, 11 (01)
  • [3] Rapid diagnosis of bacterial vaginosis using machine-learning-assisted surface-enhanced Raman spectroscopy of human vaginal fluids
    Wen, Xin-Ru
    Tang, Jia-Wei
    Chen, Jie
    Chen, Hui-Min
    Usman, Muhammad
    Yuan, Quan
    Tang, Yu-Rong
    Zhang, Yu-Dong
    Chen, Hui-Jin
    Wang, Liang
    MSYSTEMS, 2025, 10 (01):
  • [4] Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning
    Benjamin Lundquist Thomsen
    Jesper B. Christensen
    Olga Rodenko
    Iskander Usenov
    Rasmus Birkholm Grønnemose
    Thomas Emil Andersen
    Mikael Lassen
    Scientific Reports, 12
  • [5] Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning
    Thomsen, Benjamin Lundquist
    Christensen, Jesper B.
    Rodenko, Olga
    Usenov, Iskander
    Gronnemose, Rasmus Birkholm
    Andersen, Thomas Emil
    Lassen, Mikael
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Analysis of Single-Event Transients (SETs) Using Machine Learning (ML) and Ionizing Radiation Effects Spectroscopy (IRES)
    Loveless, T. D.
    Reising, D. R.
    Cancelleri, J. C.
    Massengill, L. W.
    McMorrow, D.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (08) : 1600 - 1606