Hybrid Contrastive Learning for Unsupervised Person Re-Identification

被引:65
|
作者
Si, Tongzhen [1 ]
He, Fazhi [1 ]
Zhang, Zhong [2 ]
Duan, Yansong [3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tra, Tianjin 300387, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Contrastive learning; feature distribution; unsupervised person re-identification; ENHANCEMENT;
D O I
10.1109/TMM.2022.3174414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised person re-identification (Re-ID) aims to learn discriminative features without human-annotated labels. Recently, contrastive learning has provided a new prospect for unsupervised person Re-ID, and existing methods primarily constrain the feature similarity among easy sample pairs. However, the feature similarity among hard sample pairs is neglected, which yields suboptimal performance in unsupervised person Re-ID. In this paper, we propose a novel Hybrid Contrastive Model (HCM) to perform the identity-level contrastive learning and the image-level contrastive learning for unsupervised person Re-ID, which adequately explores feature similarities among hard sample pairs. Specifically, for the identity-level contrastive learning, an identity-based memory is constructed to store pedestrian features. Accordingly, we define the dynamic contrast loss to identify identity information with dynamic factor for distinguishing hard/easy samples. As for the image-level contrastive learning, an image-based memory is established to store each image feature. We design the sample constraint loss to explore the similarity relationship between hard positive and negative sample pairs. Furthermore, we optimize the two contrastive learning processes in one unified framework to make use of their own advantages as so to constrain the feature distribution for extracting potential information. Extensive experiments demonstrate that the proposed HCM distinctly outperforms existing methods.
引用
收藏
页码:4323 / 4334
页数:12
相关论文
共 50 条
  • [1] Unsupervised person re-identification by dynamic hybrid contrastive learning
    Zhao, Yu
    Shu, Qiaoyuan
    Shi, Xi
    Zhan, Jian
    [J]. IMAGE AND VISION COMPUTING, 2023, 137
  • [2] Hybrid Contrastive Learning with Cluster Ensemble for Unsupervised Person Re-identification
    Sun, He
    Li, Mingkun
    Li, Chun-Guang
    [J]. PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 532 - 546
  • [3] CUPR: Contrastive Unsupervised Learning for Person Re-identification
    Khaldi, Khadija
    Shah, Shishir K.
    [J]. VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 92 - 100
  • [4] A new robust contrastive learning for unsupervised person re-identification
    Lin, Huibin
    Fu, Hai-Tao
    Zhang, Chun-Yang
    Chen, C. L. Philip
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1779 - 1793
  • [5] Joint Generative and Contrastive Learning for Unsupervised Person Re-identification
    Chen, Hao
    Wang, Yaohui
    Lagadec, Benoit
    Dantcheva, Antitza
    Bremond, Francois
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2004 - 2013
  • [6] Reliability modeling and contrastive learning for unsupervised person re-identification
    Pang, Zhiqi
    Wang, Chunyu
    Wang, Junjie
    Zhao, Lingling
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [7] A new robust contrastive learning for unsupervised person re-identification
    Huibin Lin
    Hai-Tao Fu
    Chun-Yang Zhang
    C. L. Philip Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2024, 15 : 1779 - 1793
  • [8] Dual-level contrastive learning for unsupervised person re-identification
    Zhao, Yu
    Shu, Qiaoyuan
    Shi, Xi
    [J]. IMAGE AND VISION COMPUTING, 2023, 129
  • [9] Fully Unsupervised Person Re-Identification via Selective Contrastive Learning
    Pang, Bo
    Zhai, Deming
    Jiang, Junjun
    Liu, Xianming
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (02)
  • [10] Transformer-based Contrastive Learning for Unsupervised Person Re-Identification
    Tao, Yusheng
    Zhang, Jian
    Chen, Tianquan
    Wang, Yuqing
    Zhu, Yuesheng
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,