Quantum gravitational sensor for space debris

被引:11
|
作者
Wu, Meng-Zhi [1 ]
Toro, Marko [2 ]
Bose, Sougato [3 ]
Mazumdar, Anupam [1 ]
机构
[1] Univ Groningen, Swinderen Inst, NL-9747 AG Groningen, Netherlands
[2] Univ Glasgow, Sch Phys & Astron, Glasgow City G12 8QQ, Scotland
[3] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
SPIN COHERENCE; HUMPTY-DUMPTY; INTERFEROMETRY; NOISE;
D O I
10.1103/PhysRevD.107.104053
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Matter-wave interferometers have fundamental applications for gravity experiments such as testing the equivalence principle and the quantum nature of gravity. In addition, matter-wave interferometers can be used as quantum sensors to measure the local gravitational acceleration caused by external massive moving objects, thus lending itself for technological applications. In this paper, we will establish a three-dimensional model to describe the gravity gradient signal from an external moving object, and theoretically investigate the achievable sensitivities using the matter-wave interferometer based on the Stern-Gerlach setup. As an application we will consider the mesoscopic interference for metric and curvature and gravitational-wave detection scheme [R. J. Marshman et al., Mesoscopic interference for metric and curvature (MIMAC) & gravitational wave detection, New J. Phys. 22, 083012 (2020)] and quantify its sensitivity to gravity gradients using frequency-space analysis. We will consider objects near Earth-based experiments and space debris in proximity of satellites and estimate the minimum detectable mass of the object as a function of their distance, velocity, and orientation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gravitational Trap for Space Debris in Geosynchronous Orbit
    Aslanov, Vladimir S.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2019, 56 (04) : 1277 - 1281
  • [2] QUANTUM LIMITATIONS IN GRAVITATIONAL SPACE EXPERIMENTS
    BRAGINSKY, VB
    [J]. RELATIVISTIC GRAVITATION, 1989, 9 : 139 - 141
  • [3] ISIS: an in situ impact sensor for space debris monitoring
    Porfilio, M
    Graziani, F
    [J]. SPACE DEBRIS, 2004, 34 (05): : 929 - 934
  • [4] Physics of gravitational interaction: Geometry of space or quantum field in space
    Baryshev, Yurij
    [J]. 1st Crisis in Cosmology Conference, CCC-I, 2006, 822 : 144 - 147
  • [5] QUANTUM SPACE-TIME AND GRAVITATIONAL CONSEQUENCES
    NAMSRAI, K
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (10) : 1035 - 1074
  • [6] Membrane based thermoelectric sensor array for space debris detection
    Haenschke, Frank
    Kessler, Ernst
    Ihring, Andreas
    Bunte, Karl Dietrich
    Herbst, Christian
    Mohaupt, Matthias
    Fichna, Torsten
    Hagedorn, Daniel
    Meyer, Hans-Georg
    [J]. SENSORS AND SYSTEMS FOR SPACE APPLICATIONS VII, 2014, 9085
  • [7] Development of the First Portuguese Radar Tracking Sensor for Space Debris
    Pandeirada, Joao
    Bergano, Miguel
    Neves, Joao
    Marques, Paulo
    Barbosa, Domingos
    Coelho, Bruno
    Ribeiro, Valerio
    [J]. SIGNALS, 2021, 2 (01): : 122 - 137
  • [8] Probing the quantum fuzziness of space and time with gravitational waves
    Kobakhidze, A.
    Lagger, C.
    Manning, A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (12):
  • [9] Advanced gravitational reference sensor for high precision space interferometers
    Sun, KX
    Allen, G
    Buchman, S
    DeBra, D
    Byer, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (10) : S287 - S296
  • [10] Sensor model for space-based local area sensing of debris
    McCall, Paul D.
    Naudeau, Madeleine L.
    Farrell, Thomas
    Sorge, Marlon E.
    Adjouadi, Malek
    [J]. INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXIV, 2013, 8706