Car-Following Behavior of Human-Driven Vehicles in Mixed-Flow Traffic: A Driving Simulator Study

被引:14
|
作者
Zhou, Anye [1 ]
Liu, Yongyang [2 ]
Tenenboim, Einat [2 ]
Agrawal, Shubham [3 ]
Peeta, Srinivas [2 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Clemson Univ, Clemson, SC 29634 USA
来源
关键词
Behavioral sciences; Trajectory; Safety; Lead; Fluctuations; Autonomous vehicles; Stability criteria; Mixed-flow traffic; car-following behavior; driving simulator; string stability; parameter estimation; ADAPTIVE CRUISE CONTROL; PLATOON CONTROL; MODEL;
D O I
10.1109/TIV.2023.3257962
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Connected and autonomous vehicles (CAVs) and human-driven vehicles (HDVs) will inevitably coexist on roads in the future, creating mixed-flow traffic. The heterogeneous car-following (CF) behavior of HDVs can degrade the control performance of CAVs and introduce inefficiencies in CAV operations. To address these challenges, it is necessary to comprehend HDV CF behavior in mixed-flow traffic. This driving simulator-based study investigates HDV CF behavior in mixed-flow traffic under three different CAV control settings (string-stable, string-unstable, and HDV-like). The effects of traffic congestion level and demographic characteristics on CF behavior are also considered. Statistical analysis and CF model calibration, based on trajectory data collected from 72 participants in driving simulator experiments, are performed to examine the impacts of these factors on string stability, traffic efficiency, and safety. Then, online parameter estimation is conducted to illustrate the time-varying desired time headway, and sensitivity to spacing and speed variations (i.e., CF behavior evolution). Additionally, analysis of post-experiment interview results and eye-tracking data show that the string-stable CAV control setting is preferred by most HDV drivers, but can trigger driver distraction. The results also provide insights for CF behavior prediction and the optimal mixed platoon formation to enhance CAV benefits for traffic flow.
引用
收藏
页码:2661 / 2673
页数:13
相关论文
共 50 条
  • [1] A Car-following Model for Mixed Traffic Flow Consisting of Human-driven Vehicles and Connected Vehicles
    Wang, Zelong
    Liu, Lin
    Li, Yongfu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2851 - 2856
  • [2] Lane management for mixed traffic flow on roadways considering the car-following behaviors of human-driven vehicles to follow connected and automated vehicles
    Zheng, Yuan
    Yao, Zhihong
    Xu, Yueru
    Qu, Xu
    Ran, Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 635
  • [3] Improving Car-Following Control in Mixed Traffic: A Deep Reinforcement Learning Framework with Aggregated Human-Driven Vehicles
    Chen, Xianda
    Tiu, PakHin
    Zhang, Yihuai
    Zhu, Meixin
    Zheng, Xinhu
    Wang, Yinhai
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 627 - 632
  • [4] Car following dynamics in mixed traffic flow of autonomous and human-driven vehicles: Complex networks approach
    Hu, Junjie
    Lee, Jaeyoung Jay
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 665
  • [5] Car-Following Models for Human-Driven Vehicles and Autonomous Vehicles: A Systematic Review
    Wang, Zelin
    Shi, Yunyang
    Tong, Weiping
    Gu, Ziyuan
    Cheng, Qixiu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (08)
  • [6] Stability and extension of a car-following model for human-driven connected vehicles
    Sun, Jie
    Zheng, Zuduo
    Sharma, Anshuman
    Sun, Jian
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 155
  • [7] Modeling car-following behavior in heterogeneous traffic mixing human-driven, automated and connected vehicles: considering multitype vehicle interactions
    Song, Ziyu
    Ding, Haitao
    NONLINEAR DYNAMICS, 2023, 111 (12) : 11115 - 11134
  • [8] Car-following behavior of connected vehicles in a mixed traffic flow: modeling and stability analysis
    Liu, Lin
    Li, Chunyuan
    Li, Yongfu
    Peeta, Srinivas
    Lin, Lei
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 1085 - 1088
  • [9] Modeling car-following behavior in heterogeneous traffic mixing human-driven, automated and connected vehicles: considering multitype vehicle interactions
    Ziyu Song
    Haitao Ding
    Nonlinear Dynamics, 2023, 111 : 11115 - 11134
  • [10] Proactive longitudinal control to preclude disruptive lane changes of human-driven vehicles in mixed-flow traffic
    Liu, Yongyang
    Zhou, Anye
    Wang, Yu
    Peeta, Srinivas
    CONTROL ENGINEERING PRACTICE, 2023, 136