posw: A command for the stepwise Neyman-orthogonal estimator

被引:1
|
作者
Drukker, David M. M. [1 ]
Liu, Di [2 ]
机构
[1] Sam Houston State Univ, Dept Econ & Int Business, Huntsville, TX 77340 USA
[2] StataCorp, College Stn, TX USA
来源
STATA JOURNAL | 2023年 / 23卷 / 02期
关键词
st0713; posw; high-dimensional model; covariate selection; partialing out; stepwise; Neyman-orthogonal; generalized linear model; postselection inference; SELECTION; INFERENCE; MODELS;
D O I
10.1177/1536867X231175272
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Inference for structural and treatment parameters while having high-dimensional covariates in the model is increasingly common. The Neyman-orthogonal (NO) estimators in Belloni, Chernozhukov, and Wei (2016, Journal of Business and Economic Statistics 34: 606-619) produce valid inferences for the parameters of interest while using generalized linear model lasso methods to select the covariates. Drukker and Liu (2022, Econometric Reviews 41: 1047-1076) extended the estimators in Belloni, Chernozhukov, and Wei (2016) by using a Bayesian information criterion stepwise method and a testing-stepwise method as the covariate selector. Drukker and Liu (2022) found a family of data-generating processes for which the NO estimator based on Bayesian information criterion stepwise produces much more reliable inferences than the lasso-based NO estimator. In this article, we describe the implementation of posw, a command for the stepwise-based NO estimator for the high-dimensional linear, logit, and Poisson models.
引用
收藏
页码:402 / 417
页数:16
相关论文
共 50 条