Metric and topology on the poset of compact pseudoultrametrics

被引:0
|
作者
Nykorovyc, S. [1 ,2 ]
Nykyforchyn, O. [2 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
[2] Casimir Great Univ Bydgoszcz, 30 JK Chodkiewicza str, PL-85064 Bydgoszcz, Poland
关键词
pseudoultrametric; metrization; compactum; hypograph;
D O I
10.15330/cmp.15.2.321-330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In two ways we introduce metrics on the set of all pseudoultrametrics, not exceeding a given compact pseudoultrametric on a fixed set, and prove that the obtained metrics are compact and topologically equivalent. To achieve this, we give a characterization of the sets being the hypographs of the mentioned pseudoultrametrics, and apply Hausdorff metric to their family. It is proved that the uniform convergence metric is a limit case of metrics defined via hypographs. It is shown that the set of all pseudoultrametrics, not exceeding a given compact pseudoultrametric, with the induced topology is a Lawson compact Hausdorff upper semilattice.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条