Parallel Packing Squares into an Obtuse Triangle

被引:1
|
作者
Januszewski, Janusz [1 ]
Liu, Xi [2 ]
Su, Zhanjun [2 ]
Zielonka, Lukasz [1 ]
机构
[1] Bydgoszcz Univ Sci & Technol, Inst Math & Phys, Al Prof S Kaliskiego 7, PL-85789 Bydgoszcz, Poland
[2] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Parallel packing; obtuse triangle; square;
D O I
10.1007/s00025-022-01803-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that T(alpha, beta) is an obtuse triangle with base length 1 and with base angles measuring alpha and beta (where alpha > 90 degrees). Let S be a square with a side parallel to the base ofT(alpha, beta) and let {Si} be a collection of the homothetic copies of S. In this note a tight upper boundof the sum of the areas of squares from{Si} that can be parallel packed into T(alpha, beta) is given. This result complements the previous upper bound obtained for alpha <= 90 degrees.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Parallel Packing Squares into an Obtuse Triangle
    Janusz Januszewski
    Xi Liu
    Zhanjun Su
    Łukasz Zielonka
    [J]. Results in Mathematics, 2023, 78
  • [2] PARALLEL COVERING AN OBTUSE TRIANGLE WITH SQUARES
    Su, Zhanjun
    Wu, Yufang
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (02) : 161 - 184
  • [3] Parallel Packing Squares into a Triangle
    Janusz Januszewski
    Xi Liu
    Zhanjun Su
    Łukasz Zielonka
    [J]. Results in Mathematics, 2022, 77
  • [4] Parallel Packing Squares into a Triangle
    Januszewski, Janusz
    Liu, Xi
    Su, Zhanjun
    Zielonka, Lukasz
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [5] Parallel packing and covering of an equilateral triangle with sequences of squares
    J. Januszewski
    [J]. Acta Mathematica Hungarica, 2009, 125 : 249 - 260
  • [6] PARALLEL PACKING AND COVERING OF AN EQUILATERAL TRIANGLE WITH SEQUENCES OF SQUARES
    Januszewski, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2009, 125 (03) : 249 - 260
  • [7] Parallel Packing and Covering of an Isosceles Right Triangle with Sequences of Squares
    Su, Chenyang
    Su, Zhanjun
    Yuan, Liping
    [J]. ARS COMBINATORIA, 2017, 130 : 3 - 16
  • [8] Obtuse triangle
    Cherny, A
    [J]. NEW REPUBLIC, 2005, 232 (18) : 10 - +
  • [9] PARALLEL COVERING OF A TRIANGLE WITH SQUARES
    Januszewski, Janusz
    Zielonka, Lukasz
    [J]. ARS COMBINATORIA, 2020, 149 : 165 - 183
  • [10] PARALLEL PACKING OF TRIANGLES WITH SQUARES
    Su, Zhanjun
    Lu, Manman
    Liu, Xi
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2209 - 2216