ON CENTRAL AUTOMORPHISMS OF FINITE p-GROUPS OF CLASS 2

被引:1
|
作者
Shabani-Attar, M. [1 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395 4697, Tehran, Iran
关键词
Central automorphisms; finite p-groups;
D O I
10.2989/16073606.2022.2112630
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group and let Aut(c)(G) be the group of all central automorphisms of G. Let C-Autc(G)(Z(G)) be the set of all central automorphisms of G fixing Z(G) elementwise. For a finite p-group of class 2, we have Inn(G) <= C-Autc (G)(Z(G)). In [6] we proved C-Autc(G) (Z(G)) = Inn(G) if and only if Z(G) is cyclic. In this paper we first prove that there is no finite p-group of class 2 for which [C-Autc(G) (Z(G)) : Inn(G)] = p, and then we characterize the finite p-groups G satisfying [C-Autc(G) (Z(G)) : Inn(G)] = p(2). As a consequence, we prove the main results of Curran and McCaughan [2].
引用
收藏
页码:1981 / 1990
页数:10
相关论文
共 50 条