Knowledge transfer evolutionary search for lightweight neural architecture with dynamic inference
被引:5
|
作者:
Qian, Xiaoxue
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Qian, Xiaoxue
[1
,2
,3
,4
]
Liu, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Liu, Fang
[1
,2
,3
,4
]
Jiao, Licheng
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Jiao, Licheng
[1
,2
,3
,4
]
Zhang, Xiangrong
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Zhang, Xiangrong
[1
,2
,3
,4
]
Huang, Xinyan
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Huang, Xinyan
[1
,2
,3
,4
]
Li, Shuo
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Li, Shuo
[1
,2
,3
,4
]
Chen, Puhua
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Chen, Puhua
[1
,2
,3
,4
]
Liu, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R ChinaXidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
Liu, Xu
[1
,2
,3
,4
]
机构:
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[2] Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian, Peoples R China
[3] Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
[4] Joint Int Res Lab Intelligent Percept & Computat, Beijing, Peoples R China
Relying on the availability of massive labeled samples, most neural architecture search (NAS) methods focus on searching large and complex models; and adopt fixed structures and parameters at the infer-ence stage. Few approaches automatically design lightweight networks for label-limited tasks and fur-ther consider the inference differences between inputs. To address these issues, we introduce evolution-ary computation (EC) and attention mechanism and propose a knowledge transfer evolutionary search for lightweight neural architecture with dynamic inference, then verify it using synthetic aperture radar (SAR) images. SAR image classification is a typical label-limited task due to the inherent imaging mecha-nism of SAR. We design the EC-based architecture search and attention-based dynamic inference for SAR image scene classification. Specifically, we build a SAR-tailored search space, explore topology pruning -based mutation operators to search lightweight architectures, and further design a dynamic Ridgelet con-volution capable of adaptive reasoning to enhance the representation ability of searched lightweight net-works. Moreover, we propose a knowledge transfer training strategy and hybrid evaluation criteria to ensure searching quickly and robustly. Experimental results show that the proposed method can search for superior neural architectures, thus improving the classification performance of SAR images.& COPY; 2023 Elsevier Ltd. All rights reserved.
机构:
Anhui Univ, Hefei, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Yang, Shangshang
Yu, Xiaoshan
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Hefei, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Yu, Xiaoshan
Tian, Ye
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Hefei, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Tian, Ye
Yan, Xueming
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Foreign Studies, Guangzhou, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Yan, Xueming
Ma, Haiping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Hefei, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Peoples R China
Dept Informat Mat & Intelligent Sensing Lab Anhui, Hefei, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Ma, Haiping
Zhang, Xingyi
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Hefei, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Peoples R ChinaAnhui Univ, Hefei, Peoples R China
Zhang, Xingyi
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023),
2023,
机构:
Nagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Navier Inc, Tokyo 1020084, JapanNagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Liu, Dichao
Yamasaki, Toshihiko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1138656, JapanNagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Yamasaki, Toshihiko
Wang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
Hitotsubashi Univ, Ctr Informat & Commun Technol, Tokyo 1868601, JapanNagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Wang, Yu
Mase, Kenji
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Navier Inc, Tokyo 1020084, JapanNagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan
Mase, Kenji
Kato, Jien
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
Hitotsubashi Univ, Ctr Informat & Commun Technol, Tokyo 1868601, JapanNagoya Univ, Grad Sch Informat, Nagoya, Aichi 4648601, Japan