Using plausible values when fitting multilevel models with large-scale assessment data using R

被引:4
|
作者
Huang, Francis L. [1 ,2 ]
机构
[1] Univ Missouri, 16 Hill Hall, Columbia, MO 65211 USA
[2] Univ Missouri, Missouri Prevent Sci Inst, 16 Hill Hall, Columbia, MO 65211 USA
关键词
R; Multilevel models; Plausible values; Weights; MULTIPLE IMPUTATION; SECONDARY ANALYSIS; SAMPLING WEIGHTS; MISSING-DATA;
D O I
10.1186/s40536-024-00192-0
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional functions in R that extend the functionality of the WeMix (Bailey et al., 2023) package to allow for the automatic pooling of plausible values. In addition, functions for model comparisons using plausible values and the ability to export output to different formats (e.g., Word, html) are also provided.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Using plausible values when fitting multilevel models with large-scale assessment data using R
    Francis L. Huang
    Large-scale Assessments in Education, 12
  • [2] On generating plausible values for multilevel modelling with large-scale-assessment data
    Zheng, Xiaying
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2024, 77 (01): : 212 - 236
  • [3] Using plausible values in secondary analysis in large-scale assessments
    Laukaityte, Inga
    Wiberg, Marie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11341 - 11357
  • [4] Considerations for the use of plausible values in large-scale assessments
    Jewsbury, Paul A.
    Jia, Yue
    Gonzalez, Eugenio J.
    LARGE-SCALE ASSESSMENTS IN EDUCATION, 2024, 12 (01)
  • [5] The Importance of Sample Weights and Plausible Values in Large-Scale Assessments
    Arikan, Serkan
    Ozer, Ferah
    Seker, Vuslat
    Ertas, Gunes
    JOURNAL OF MEASUREMENT AND EVALUATION IN EDUCATION AND PSYCHOLOGY-EPOD, 2020, 11 (01): : 43 - 60
  • [6] Fitting large-scale structured additive regression models using Krylov subspace methods
    Schmidt, Paul
    Muehlau, Mark
    Schmid, Volker
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 59 - 75
  • [7] Stochastic dynamics and fatigue analysis of large-scale mechanical models using multilevel substructuring
    Valsamos, G.
    Sikelis, K.
    Natsiavas, S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2012, 226 (K4) : 343 - 358
  • [8] Cardiovascular Risk Models Using Large-Scale Physical Examination Data
    Fei, Jintao
    Ding, Shuhan
    Li, Minghui
    Yuan, Yifang
    Luo, Jiangying
    Wang, Guoxin
    Zhao, Jun
    Cao, Xuyang
    Gao, Minyu
    Yao, Yang
    Zhang, Ping
    Xu, Zhaoji
    Liu, Mingxue
    Wu, Xinyue
    Wang, Ding
    CIRCULATION, 2024, 150
  • [9] Detecting latent subpopulations in international large-scale assessments by fitting MixIRT models using NUTS
    AlHakmani, Rehab
    Sheng, Yanyan
    LARGE-SCALE ASSESSMENTS IN EDUCATION, 2024, 12 (01)
  • [10] Isasim: an R package for simulating large-scale assessment data
    Matta, Tyler H.
    Rutkowski, Leslie
    Rutkowski, David
    Liaw, Yuan-Ling
    LARGE-SCALE ASSESSMENTS IN EDUCATION, 2018, 6