Sub-pixel mapping based on spectral information of irregular scale areas for hyperspectral images

被引:1
|
作者
Wang, Peng [1 ,2 ,3 ]
Chen, Yong-Kang [3 ]
Zhang, Gong [3 ]
Wang, Hong-Ying [4 ]
Zhao, Chun-Lei [5 ]
Han, Ling [6 ]
机构
[1] Minist Nat Resources, Zhangzhou Inst Surveying & Mapping, Key Lab Southeast Coast Marine Informat Intelligen, Zhangzhou 363000, Peoples R China
[2] Chuzhou Univ, Anhui Prov Key Lab Phys Geog Environm, Chuzhou 239000, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Sch Management, Nanjing 210003, Peoples R China
[5] Meteorol Inst Hebei, Key Lab Meteorol & Ecol Environm Hebei Prov, Shijiazhuang 050021, Peoples R China
[6] Changan Univ, Xian Key Lab Terr Spatial Informat, Xian 710064, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral images; sub-pixel mapping; super-resolution mapping; spatial-spectral information; irregular scale areas;
D O I
10.11972/j.issn.1001-9014.2023.04.016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sub-pixel mapping technology can analyze mixed pixels and realize the transformation from fractional images to fine a land-cover mapping image at the sub-pixel level. However, the spectral information used by the traditional sub-pixel mapping methods is usually constructed in a specified rectangular local window, and the spectral information of all bands is rarely used, affecting the performance of sub-pixel mapping. To solve this issue, sub-pixel mapping based on spectral information of irregular scale areas (SIISA) for hyperspectral images is proposed in this paper. The experimental results on three remote sensing images show the proposed SIISA outperforms the existing sub-pixel mapping methods.
引用
收藏
页码:538 / 545
页数:8
相关论文
共 28 条
  • [1] Sub-pixel target mapping from soft-classified, remotely sensed imagery
    Atkinson, PM
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2005, 71 (07): : 839 - 846
  • [2] Chen YH, 2018, IEEE T GEOSCI REMOTE, V56, P328, DOI [10.1109/TGRS.2017.2747624, 10.1109/tgrs.2017.2747624]
  • [3] Optimal MMSE pan sharpening of very high resolution multispectral images
    Garzelli, Andrea
    Nencini, Filippo
    Capobianco, Luca
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01): : 228 - 236
  • [4] Spatial-Temporal Sub-Pixel Mapping Based on Swarm Intelligence Theory
    He, Da
    Zhong, Yanfei
    Feng, Ruyi
    Zhang, Liangpei
    [J]. REMOTE SENSING, 2016, 8 (11)
  • [5] Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States
    Huang, Chengquan
    Goward, Samuel N.
    Schleeweis, Karen
    Thomas, Nancy
    Masek, Jeffrey G.
    Zhu, Zhiliang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (07) : 1430 - 1442
  • [6] A super-resolution mapping method using local indicator variograms
    Jin, Huiran
    Mountrakis, Giorgos
    Li, Peijun
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (24) : 7747 - 7773
  • [7] Superresolution Mapping of Remotely Sensed Image Based on Hopfield Neural Network With Anisotropic Spatial Dependence Model
    Li, Xiaodong
    Du, Yun
    Ling, Feng
    Feng, Qi
    Fu, Bitao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (07) : 1265 - 1269
  • [8] Super-resolution land cover mapping by deep learning
    Ling, Feng
    Foody, Giles M.
    [J]. REMOTE SENSING LETTERS, 2019, 10 (06) : 598 - 606
  • [9] Burned-Area Mapping at the Subpixel Scale With MODIS Images
    Ling, Feng
    Du, Yun
    Zhang, Yihang
    Li, Xiaodong
    Xiao, Fei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1963 - 1967
  • [10] Sub-pixel mapping of remotely sensed imagery with hybrid intra- and inter-pixel dependence
    Ling, Feng
    Li, Xiaodong
    Du, Yun
    Xiao, Fei
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (01) : 341 - 357