Simulating seismic multifrequency wavefields with the Fourier feature physics-informed neural network

被引:28
|
作者
Song, Chao [1 ,2 ]
Wang, Yanghua [2 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130021, Peoples R China
[2] Imperial Coll London, Ctr Reservoir Geophys, Resource Geophys Acad, London SW7 2BP, England
关键词
Neural networks; fuzzy logic; Numerical modeling; Physics-informed neural network; Wave propagation; MULTILAYER FEEDFORWARD NETWORKS; FORM INVERSION; HELMHOLTZ-EQUATION; FINITE-DIFFERENCE; AUTOMATIC PICKING; APPROXIMATE; FRAMEWORK; SPACE;
D O I
10.1093/gji/ggac399
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To simulate seismic wavefields with a frequency-domain wave equation, conventional numerical methods must solve the equation sequentially to obtain the wavefields for different frequencies. The monofrequency equation has the form of a Helmholtz equation. When solving the Helmholtz equation for seismic wavefields with multiple frequencies, a physics-informed neural network (PINN) can be used. However, the PINN suffers from the problem of spectral bias when approximating high-frequency components. We propose to simulate seismic multifrequency wavefields using a PINN with an embedded Fourier feature. The input to the Fourier feature PINN for simulating multifrequency wavefields is 4-D, namely the horizontal and vertical spatial coordinates of the model, the horizontal position of the source, and the frequency, and the output is multifrequency wavefields at arbitrary source positions. While an effective Fourier feature initialization strategy can lead to optimal convergence in training this network, the Fourier feature PINN simulates multifrequency wavefields with reasonable efficiency and accuracy.
引用
收藏
页码:1503 / 1514
页数:12
相关论文
共 50 条
  • [1] Modeling multisource multifrequency acoustic wavefields by a multiscale Fourier feature physics-informed neural network with adaptive activation functions
    Chai, Xintao
    Gu, Zhiyuan
    Long, Hang
    Liu, Shaoyong
    Yang, Taihui
    Wang, Lei
    Zhan, Fenglin
    Sun, Xiaodong
    Cao, Wenjun
    [J]. GEOPHYSICS, 2024, 89 (03) : T79 - T94
  • [2] Physics-informed neural wavefields with Gabor basis functions
    Alkhalifah, Tariq
    Huang, Xinquan
    [J]. NEURAL NETWORKS, 2024, 175
  • [3] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    [J]. GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [4] Physics-informed neural network for simulating magnetic field of coaxial magnetic gear
    Hou, Shubo
    Hao, Xiuhong
    Pan, Deng
    Wu, Wenchao
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [5] Physics-Informed Neural Network with Fourier Features for Radiation Transport in Heterogeneous Media
    Huhn, Quincy A.
    Tano, Mauricio E.
    Ragusa, Jean C.
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (09) : 2484 - 2497
  • [6] Fourier warm start for physics-informed neural networks
    Jin, Ge
    Wong, Jian Cheng
    Gupta, Abhishek
    Li, Shipeng
    Ong, Yew-Soon
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [7] Sparse phase retrieval using a physics-informed neural network for Fourier ptychographic microscopy
    Zhang, Z. H. O. N. G. H. U. A.
    Wang, T. I. A. N.
    Feng, S. H. A. O. W. E., I
    Yang, Y. O. N. G. X. I. N.
    Lai, C. H. U. N. H. O. N. G.
    LI, X. I. N. W. E. I.
    Shao, L. I. Z. H. I.
    Jiang, X. I. A. O. M. I. N. G.
    [J]. OPTICS LETTERS, 2022, 47 (19) : 4909 - 4912
  • [8] Seismic Inversion Based on Acoustic Wave Equations Using Physics-Informed Neural Network
    Zhang, Yijie
    Zhu, Xueyu
    Gao, Jinghuai
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
    Taneja, Karan
    He, Xiaolong
    He, QiZhi
    Zhao, Xinlun
    Lin, Yun-An
    Loh, Kenneth J.
    Chen, Jiun-Shyan
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (12):
  • [10] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,