Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system

被引:0
|
作者
Mangoubi, Jean De Dieu [1 ]
Goyaud, Mayeul Evrard Isseret [1 ]
Moukoko, Daniel [1 ]
机构
[1] Univ Marien Ngouabi, Fac Sci & Tech, BP 69, Brazzaville, Rep Congo
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
attractor; pullback & omega; -limit compact; pullback condition; norm-to-weak continuous; nonautonomous parabolic Cahn-Hilliard phase-field system; EXPONENTIAL ATTRACTORS; WAVE-EQUATIONS;
D O I
10.3934/math.20231123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.
引用
收藏
页码:22037 / 22066
页数:30
相关论文
共 50 条
  • [1] The Cahn-Hilliard equation as limit of a conserved phase-field system
    Bonfoh, Ahmed
    Enyi, Cyril D.
    [J]. ASYMPTOTIC ANALYSIS, 2017, 101 (03) : 97 - 148
  • [2] Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term
    Nimi, Aymard Christbert
    Moukoko, Daniel
    [J]. AIMS MATHEMATICS, 2020, 5 (02): : 1383 - 1399
  • [3] GLOBAL ATTRACTOR FOR THE CAHN-HILLIARD SYSTEM
    CHOLEWA, JW
    DLOTKO, T
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 49 (02) : 277 - 292
  • [4] Isogeometric analysis of the Cahn-Hilliard phase-field model
    Gomez, Hector
    Calo, Victor M.
    Bazilevs, Yuri
    Hughes, Thomas J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (49-50) : 4333 - 4352
  • [5] The Cahn-Hilliard phase-field model for topology optimization of solids
    Wang, M. Y.
    Zhou, S.
    [J]. IUTAM SYMPOSIUM ON SIZE EFFECTS ON MATERIAL AND STRUCTURAL BEHAVIOR AT MICRON- AND NANO-SCALES, 2006, 142 : 133 - +
  • [6] Global attractor for the Cahn-Hilliard/Allen-Cahn system
    Gokieli, M
    Ito, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) : 1821 - 1841
  • [7] Cahn-Hilliard equation as degenerate limit of the phase-field equations
    [J]. 1600, Brown Univ, Providence, RI, USA (53):
  • [8] Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids
    Toth, Gyula I.
    Zarifi, Mojdeh
    Kvamme, Bjorn
    [J]. PHYSICAL REVIEW E, 2016, 93 (01)
  • [9] Natural element analysis of the Cahn-Hilliard phase-field model
    Rajagopal, Amirtham
    Fischer, Paul
    Kuhl, Ellen
    Steinmann, Paul
    [J]. COMPUTATIONAL MECHANICS, 2010, 46 (03) : 471 - 493
  • [10] Cahn-Hilliard vs Singular Cahn-Hilliard Equations in Phase Field Modeling
    Zhang, Tianyu
    Wang, Qi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (02) : 362 - 382