FF-LINS: A Consistent Frame-to-Frame Solid-State-LiDAR-Inertial State Estimator

被引:1
|
作者
Tang, Hailiang [1 ]
Zhang, Tisheng [1 ,2 ]
Niu, Xiaoji [1 ,2 ]
Wang, Liqiang [1 ]
Wei, Linfu [1 ]
Liu, Jingnan [1 ,2 ]
机构
[1] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[2] Hubei Luojia Lab, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
LiDAR-inertial navigation; state estimation; factor graph optimization; multi-sensor fusion navigation; REGISTRATION; VEHICLES; LIO;
D O I
10.1109/LRA.2023.3329625
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Most of the existing LiDAR-inertial navigation systems are based on frame-to-map registrations, leading to inconsistency in state estimation. The newest solid-state LiDAR with a non-repetitive scanning pattern makes it possible to achieve a consistent LiDAR-inertial estimator by employing a frame-to-frame data association. In this letter, we propose a robust and consistent frame-to-frame LiDAR-inertial navigation system (FF-LINS) for solid-state LiDARs. With the INS-centric LiDAR frame processing, the keyframe point-cloud map is built using the accumulated point clouds to construct the frame-to-frame data association. The LiDAR frame-to-frame and the inertial measurement unit (IMU) preintegration measurements are tightly integrated using the factor graph optimization, with online calibration of the LiDAR-IMU extrinsic and time-delay parameters. The experiments on the public and private datasets demonstrate that the proposed FF-LINS achieves superior accuracy and robustness than the state-of-the-art systems. Besides, the LiDAR-IMU extrinsic and time-delay parameters are estimated effectively, and the online calibration notably improves the pose accuracy.
引用
收藏
页码:8525 / 8532
页数:8
相关论文
共 40 条
  • [1] LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation
    Qin, Chao
    Ye, Haoyang
    Pranata, Christian E.
    Han, Jun
    Zhang, Shuyang
    Liu, Ming
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8899 - 8905
  • [2] Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping
    Li, Kailai
    Li, Meng
    Hanebeck, Uwe D.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 5167 - 5174
  • [3] FEJ2: A Consistent Visual-Inertial State Estimator Design
    Chen, Chuchu
    Yang, Yulin
    Geneva, Patrick
    Huang, Guoquan
    [J]. Proceedings - IEEE International Conference on Robotics and Automation, 2022, : 9506 - 9512
  • [4] FEJ2: A Consistent Visual-Inertial State Estimator Design
    Chen, Chuchu
    Yang, Yulin
    Geneva, Patrick
    Huang, Guoquan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9506 - 9512
  • [5] Two Key-Frame State Marginalization for Computationally Efficient Visual Inertial Navigation
    Thalagala, Ravindu G.
    De Silva, Oscar
    Mann, George K., I
    Gosine, Raymond G.
    [J]. 2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1138 - 1143
  • [6] Solid-state nuclear magnetic resonance in the rotating tilted frame
    Trease, Nicole M.
    Grandinetti, Philip J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (05):
  • [7] LIDAR-Inertial Real-Time State Estimator with Rod-Shaped and Planar Feature
    Liu, Hong
    Pan, Shuguo
    Gao, Wang
    Ma, Chun
    Jia, Fengshuo
    Lu, Xinyu
    [J]. REMOTE SENSING, 2022, 14 (16)
  • [8] LIVER: A Tightly Coupled LiDAR-Inertial-Visual State Estimator With High Robustness for Underground Environments
    Wen, Tianci
    Fang, Yongchun
    Lu, Biao
    Zhang, Xuebo
    Tang, Chaoquan
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2399 - 2406
  • [9] A fast and stable GNSS-LiDAR-inertial state estimator from coarse to fine by iterated error-state Kalman filter
    Gao, Jixin
    Sha, Jianjun
    Wang, Yanheng
    Wang, Xiangwei
    Tan, Cong
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 175
  • [10] Radio-Audio Frequencies Excitation in Solid-State Rotating Frame NMR
    De Luca, F.
    Fattibene, P.
    Lugeri, N.
    Campanella, R.
    Maraviglia, B.
    [J]. APPLIED MAGNETIC RESONANCE, 1991, 2 (01) : 93 - 106