Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume

被引:4
|
作者
Wu, Rui [1 ]
Qian, Chengcheng [1 ]
Yang, Yatian [1 ]
Liu, Yi [1 ]
Xu, Liang [1 ]
Zhang, Wei [1 ,2 ]
Ou, Jinmei [1 ,2 ,3 ]
机构
[1] Anhui Univ Chinese Med, Sch Pharm, Hefei 230012, Peoples R China
[2] Anhui Key Lab New Technol Chinese Herbs Pieces Mfg, Hefei 230012, Peoples R China
[3] State Key Lab Dao Di Herbs, Beijing 100700, Peoples R China
关键词
Flavonoids; Metabolomics; Phenylpropanoids; Prunus mume; Transcriptomics; ACYLATED SUCROSES; FLOWER BUDS; GENE FAMILY; CONSTITUENTS; MECHANISM;
D O I
10.1007/s10265-023-01500-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 50 条
  • [1] Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume
    Rui Wu
    Chengcheng Qian
    Yatian Yang
    Yi Liu
    Liang Xu
    Wei Zhang
    Jinmei Ou
    [J]. Journal of Plant Research, 2024, 137 : 95 - 109
  • [2] Integrative transcriptomic and metabolomic analyses reveal the flavonoid biosynthesis of Pyrus hopeiensis flowers under cold stress
    Li, Yongtan
    Zhang, Jun
    Wang, Shijie
    Zhang, Haie
    Liu, Yichao
    Yang, Minsheng
    [J]. HORTICULTURAL PLANT JOURNAL, 2023, 9 (03) : 395 - 413
  • [3] Integrative transcriptomic and metabolomic analyses reveal the flavonoid biosynthesis of Pyrus hopeiensis flowers under cold stress
    Yongtan Li
    Jun Zhang
    Shijie Wang
    Haie Zhang
    Yichao Liu
    Minsheng Yang
    [J]. Horticultural Plant Journal, 2023, 9 (03) : 395 - 413
  • [4] Transcriptomic and Non-Targeted Metabolomic Analyses Reveal the Flavonoid Biosynthesis Pathway in Auricularia cornea
    Meng, Li
    Zhang, Shaoyan
    Bai, Xiaoran
    Li, Xiaobo
    Wang, Qingji
    Wang, Li
    Wang, Wei
    Li, Zhuang
    [J]. MOLECULES, 2022, 27 (07):
  • [5] Comparative transcriptomic and metabolomic analyses reveal differences in flavonoid biosynthesis between PCNA and PCA persimmon fruit
    Wang, Yiru
    Suo, Yujing
    Han, Weijuan
    Li, Huawei
    Wang, Zhenxu
    Diao, Songfeng
    Sun, Peng
    Fu, Jianmin
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Integration of Metabolomic and Transcriptomic Analyses Reveals the Molecular Mechanisms of Flower Color Formation in Prunus mume
    Wang, Ruyi
    Yang, Xin
    Wang, Tao
    Li, Baohui
    Li, Ping
    Zhang, Qin
    [J]. PLANTS-BASEL, 2024, 13 (08):
  • [7] Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis 'Tomentosa' fruits
    Fan, Ruiyi
    Zhu, Congyi
    Qiu, Diyang
    Mao, Genlin
    Mueller-Roeber, Bernd
    Zeng, Jiwu
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 196 : 210 - 221
  • [8] Transcriptomic and metabolomic analyses reveal that ABA increases the salt tolerance of rice significantly correlated with jasmonic acid biosynthesis and flavonoid biosynthesis
    Han C.
    Chen G.
    Zheng D.
    Feng N.
    [J]. Scientific Reports, 13 (1)
  • [9] Metabolomic and transcriptomic reveal flavonoid biosynthesis and regulation mechanism in Phlomoides rotata from different habitats
    Li, Zuxia
    Geng, Guigong
    Xie, Huichun
    Zhou, Lianyu
    Wang, Luhao
    Qiao, Feng
    [J]. GENOMICS, 2024, 116 (03)
  • [10] Integrative metabolomic and transcriptomic analyses reveal the mechanisms of Tibetan hulless barley grain coloration
    Xu, Congping
    Abbas, Hafiz Muhammad Khalid
    Zhan, Chuansong
    Huang, Yuxiao
    Huang, Sishu
    Yang, Haizhen
    Wang, Yulin
    Yuan, Hongjun
    Luo, Jie
    Zeng, Xingquan
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13