Exploring the chiral and deconfinement phase transitions in a self-consistent PNJL model

被引:0
|
作者
Yu, Xiaozhu [1 ]
Wu, Liangkai [1 ]
Yu, Lang [2 ]
Wang, Xinyang [1 ,3 ,4 ]
机构
[1] Jiangsu Univ, Dept Phys, Zhenjiang 212013, Peoples R China
[2] JiLin Univ, Coll Phys, Changchun 130012, Peoples R China
[3] Anhui Univ Sci & Technol, Ctr Fundamental Phys, Sch Mech & Phys, Huainan 232001, Anhui, Peoples R China
[4] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL A | 2024年 / 60卷 / 02期
基金
中国国家自然科学基金;
关键词
JONA-LASINIO MODEL; DYNAMICAL MODEL; ANALOGY;
D O I
10.1140/epja/s10050-024-01239-0
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this work, we study the chiral, deconfinement phase transitions in a two-flavor Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model. Note that the self-consistent mean field approximation is employed by introducing an arbitrary parameter alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} to measure the weights of the Fierz-transformed interaction channels. By making use of this model, we systematically investigate the chiral and deconfinement phase transition lines (as well as the chiral ones in the NJL model for comparison) under different values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. It is found that the increasing of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} helps to enhance the chiral (pseudo)critical temperature at fixed chemical potential and also to enhance the chiral (pseudo)critical chemical potential at fixed temperature. And the critical end point (CEP) vanishes when alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} becomes large enough. Besides, we find that the incorporation of Polyakov loop increases TCEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{CEP}$$\end{document} but does not change mu CEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{CEP}$$\end{document} for small values of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页数:6
相关论文
共 50 条