Accelerating Python']Pythonic Coupled-Cluster Implementations: A Comparison Between CPUs and GPUs

被引:1
|
作者
Kriebel, Maximilian H. [1 ]
Tecmer, Pawel [1 ]
Galynska, Marta [1 ]
Leszczyk, Aleksandra [1 ]
Boguslawski, Katharina [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Inst Phys, Fac Phys Astron & Informat, Torun, Poland
关键词
GRAPHICAL PROCESSING UNITS; ELECTRONIC-STRUCTURE CALCULATIONS; INTEGRAL EVALUATION; QUANTUM-CHEMISTRY; INTERFACE;
D O I
10.1021/acs.jctc.3c01110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we benchmark several Python routines for time and memory requirements to identify the optimal choice of the tensor contraction operations available. We scrutinize how to accelerate the bottleneck tensor operations of Pythonic coupled-cluster implementations in the Cholesky linear algebra domain, utilizing a NVIDIA Tesla V100S PCIe 32GB (rev 1a) graphics processing unit (GPU). The NVIDIA compute unified device architecture API interacts with CuPy, an open-source library for Python, designed as a NumPy drop-in replacement for GPUs. Due to the limitations of video memory, the GPU calculations must be performed batch-wise. Timing results of some contractions containing large tensors are presented. The CuPy implementation leads to a factor of 10-16 speed-up of the bottleneck tensor contractions compared to computations on 36 central processing unit (CPU) cores. Finally, we compare example CCSD and pCCD-LCCSD calculations performed solely on CPUs to their CPU-GPU hybrid implementation, which leads to a speed-up of a factor of 3-4 compared to the CPU-only variant.
引用
收藏
页码:1130 / 1142
页数:13
相关论文
共 50 条
  • [1] Toward coupled-cluster implementations in nuclear structure
    Dean, DJ
    Hjorth-Jensen, M
    [J]. FRONTIERS OF NUCLEAR STRUCTURE, 2003, 656 : 197 - 204
  • [2] Hybrid Cluster of Multicore CPUs and GPUs for Accelerating Hyperspectral Image Hierarchical Segmentation
    Hossam, Mahmoud A.
    Ebied, Hala M.
    Abdel-Aziz, Mohamed H.
    [J]. 2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2013, : 262 - 267
  • [3] COMPARISON OF COUPLED-CLUSTER AND BRUECKNER COUPLED-CLUSTER CALCULATIONS OF MOLECULAR-PROPERTIES
    KOBAYASHI, R
    KOCH, H
    JORGENSEN, P
    LEE, TJ
    [J]. CHEMICAL PHYSICS LETTERS, 1993, 211 (01) : 94 - 100
  • [4] Accelerating the convergence of higher-order coupled-cluster methods II: coupled-cluster ? equations and dynamic damping
    Matthews, Devin A.
    [J]. MOLECULAR PHYSICS, 2020, 118 (19-20)
  • [5] ACCELERATING THE CONVERGENCE OF THE COUPLED-CLUSTER APPROACH - THE USE OF THE DIIS METHOD
    SCUSERIA, GE
    LEE, TJ
    SCHAEFER, HF
    [J]. CHEMICAL PHYSICS LETTERS, 1986, 130 (03) : 236 - 239
  • [6] Comparison of contracted Schrodinger and coupled-cluster theories
    Mazziotti, DA
    [J]. PHYSICAL REVIEW A, 1999, 60 (06): : 4396 - 4408
  • [7] Resonating Coupled-Cluster CI Approach to Ion-Radical Systems: Comparison with the Unrestricted Coupled-Cluster Approach
    Yamanaka, S.
    Nishihara, S.
    Nakata, K.
    Yonezawa, Y.
    Okumura, M.
    Takada, T.
    Nakamura, H.
    Yamaguchi, K.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (15) : 3811 - 3818
  • [8] Physical and mathematical content of coupled-cluster equations: Correspondence between coupled-cluster and configuration-interaction solutions
    Jankowski, K
    Kowalski, K
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08): : 3714 - 3729
  • [9] Accelerating Coupled-Cluster Calculations with GPUs: An Implementation of the Density-Fitted CCSD(T) Approach for Heterogeneous Computing Architectures Using OpenMP Directives
    Datta, Dipayan
    Gordon, Mark S.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7640 - 7657
  • [10] COMPARISON OF THE BRUECKNER AND COUPLED-CLUSTER APPROACHES TO ELECTRON CORRELATION
    LEE, TJ
    KOBAYASHI, R
    HANDY, NC
    AMOS, RD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (12): : 8931 - 8937