Learning to Control Known Feedback Linearizable Systems From Demonstrations

被引:3
|
作者
Sultangazin, Alimzhan [1 ,2 ]
Pannocchi, Luigi [1 ,3 ,4 ]
Fraile, Lucas [1 ,5 ]
Tabuada, Paulo [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] PlusAI, Santa Clara, CA 95054 USA
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[4] Scuola Super Sant Anna, Real Time Syst Lab, I-56127 Pisa, Italy
[5] Parallel Syst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Trajectory; Control systems; Task analysis; Cloning; Asymptotic stability; Transforms; Standards; Machine learning; motion control; nonlinear control systems; robot control; ROBOT; BALL;
D O I
10.1109/TAC.2023.3272392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
this article, we revisit the problem of learning a stabilizing controller from a finite number of demonstrations by an expert. By first focusing on feedback linearizable systems, we show how to combine expert demonstrations into a stabilizing controller, provided that demonstration trajectories are sufficiently long and there are at least n + 1 of them, where n is the number of states of the system being controlled. When we have more than n + 1 demonstration trajectories, we discuss how to optimally choose the best n + 1 demonstrations to construct the stabilizing controller. We then extend these results to a class of systems that can be embedded into a higher dimensional system containing a chain of integrators. The feasibility of the proposed algorithm is demonstrated by applying it on a CrazyFlie 2.0 quadrotor.
引用
下载
收藏
页码:189 / 201
页数:13
相关论文
共 50 条
  • [1] Watch and Learn: Learning to control feedback linearizable systems from expert demonstrations
    Sultangazin, Alimzhan
    Pannocchi, Luigi
    Fraile, Lucas
    Tabuada, Paulo
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8577 - 8583
  • [2] Exploiting the experts: Learning to control unknown SISO feedback linearizable systems from expert demonstrations
    Sultangazin, Alimzhan
    Fraile, Lucas
    Tabuada, Paulo
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5789 - 5794
  • [3] Adaptive learning control for feedback linearizable systems
    Del Vecchio, D
    Marino, R
    Tomei, P
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (05) : 483 - 496
  • [4] An adaptive learning control for feedback linearizable systems
    Del Vecchio, D
    Marino, R
    Tomei, P
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 2817 - 2821
  • [5] Discussion on: "Adaptive learning control for feedback linearizable systems"
    Ha, IJ
    Ahn, BG
    Lee, JY
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (05) : 497 - 498
  • [6] Global iterative learning control of feedback linearizable systems
    Marino, Riccardo
    Tomei, Patrizio
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5036 - 5041
  • [7] An Iterative Learning Control for a Class of Partially Feedback Linearizable Systems
    Marino, Riccardo
    Tomei, Patrizio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (08) : 1991 - 1996
  • [8] Geometry of cascade feedback linearizable control systems
    Klotz, Taylor J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 90
  • [9] An adaptive feedback control of linearizable chaotic systems
    Feki, M
    CHAOS SOLITONS & FRACTALS, 2003, 15 (05) : 883 - 890
  • [10] Data-Based Control of Feedback Linearizable Systems
    Alsalti, Mohammad
    Lopez, Victor G.
    Berberich, Julian
    Allgoewer, Frank
    Mueller, Matthias A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 7014 - 7021