Meta-learning-based adversarial training for deep 3D face recognition on point clouds

被引:23
|
作者
Yu, Cuican [1 ]
Zhang, Zihui [2 ]
Li, Huibin [1 ]
Sun, Jian [1 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep 3D face recognition; Point clouds; Adversarial samples; Meta; -learning; MODEL;
D O I
10.1016/j.patcog.2022.109065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep face recognition using 2D face images has made great advances mainly due to the readily available large-scale face data. However, deep face recognition using 3D face scans, especially on point clouds, has been far from fully explored. In this paper, we propose a novel meta-learning-based adversarial training (MLAT) algorithm for deep 3D face recognition (3DFR) on point clouds. It consists of two alternate modules: adversarial sample generating for 3D face data augmentation and meta-learning-based deep network training. In the first module, adversarial samples of given 3D face scans are dynamically generated based on current deep 3DFR model. In the second module, a meta-learning framework is designed to avoid the performance decrease caused by the generated adversarial samples. Overall, MLAT algorithm combines the adversarial sample generating and meta-learning-based network training in a uniform framework, in which adversarial samples and network parameters are optimized alternately. Thus, it can continuously generate diverse and suitable adversarial samples, and then the meta-learning framework can further improve the accuracy of 3DFR model. Comprehensive experimental results show that the proposed approach consistently achieves competitive rank-one recognition accuracies on the BU-3DFE (10 0%), Bosphorus (99.78%), BU-4DFE (98.02%) and FRGC v2 (98.01%) database, and thereby substantiate its superiority.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Minimal Adversarial Examples for Deep Learning on 3D Point Clouds
    Kim, Jaeyeon
    Hua, Binh-Son
    Duc Thanh Nguyen
    Yeung, Sai-Kit
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7777 - 7786
  • [2] Face Recognition on 3D Point Clouds
    Zhang, Ziyu
    Da, Feipeng
    Wang, Chenxing
    Yu, Jian
    Yu, Yi
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [3] 3D Face Recognition Based on Deep Learning
    Luo, Jing
    Hu, Fei
    Wang, Ruihuan
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1576 - 1581
  • [4] Review: Deep Learning on 3D Point Clouds
    Bello, Saifullahi Aminu
    Yu, Shangshu
    Wang, Cheng
    Adam, Jibril Muhmmad
    Li, Jonathan
    REMOTE SENSING, 2020, 12 (11)
  • [5] Deep Learning for 3D Point Clouds: A Survey
    Guo, Yulan
    Wang, Hanyun
    Hu, Qingyong
    Liu, Hao
    Liu, Li
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4338 - 4364
  • [6] Training-based Object Recognition in Cluttered 3D Point Clouds
    Pang, Guan
    Neumann, Ulrich
    2013 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2013), 2013, : 87 - 94
  • [7] Generating 3D Adversarial Point Clouds
    Xiang, Chong
    Qi, Charles R.
    Li, Bo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9128 - 9136
  • [8] Learning directly from synthetic point clouds for "in-the-wild" 3D face recognition
    Zhang, Ziyu
    Da, Feipeng
    Yu, Yi
    PATTERN RECOGNITION, 2022, 123
  • [9] A 3D Face Recognition Algorithm Directly Applied to Point Clouds
    You, Xingyi
    Zhao, Xiaohu
    BIOMIMETICS, 2025, 10 (02)
  • [10] 3D Point Clouds Face Recognition by BP Neural Networks
    Chen, Hung-Zi
    Hung, Pen-Shan
    Chung Cheng Ling Hsueh Pao/Journal of Chung Cheng Institute of Technology, 2015, 44 (01): : 9 - 24