High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries

被引:6
|
作者
Ma, Lei [1 ]
Fu, Xiaomeng [2 ]
Zhao, Fangfang [1 ]
Su, Wenda [1 ]
Yu, Liming [1 ]
Lu, Cheng [1 ]
Wei, Liangming [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Guo, Xiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Key Lab Thin Film & Microfabricat,Minist Educ, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon microparticle anodes; binder; carboxymethyl cellulose; polydopamine; DESIGN; POLYMER; SURFACE; GUM;
D O I
10.1021/acsaem.2c03606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon microparticles (SiMPs) have been gradually explored as the anode materials for lithium-ion batteries (LIBs) because they have higher tap density and lower cost than nano-structured Si and thus are more suitable for commercial high-energy battery applications. Developing a binder to alleviate the volume effect of SiMPs and ensure electrode stability during cycling is an effective method. Here, we propose a water-soluble binder by integrating carboxymethyl cellulose (CMC) with polydopamine (PDA) prepared from an alkaline aqueous solution, and the conventional buffer tris, an organic substance, is discarded to avoid problems during electrode preparation. The obtained binder CMC-10% PDA exhibits higher viscosity and better mechanical properties than CMC due to the strong interaction between CMC and PDA through hydrogen bonds and some covalent bonds. The SiMP anodes with the binder (the Si@ CMC-10% PDA electrodes) demonstrate excellent cycling stability (above 1700 mAh g-1 at 0.2 C after 1000 cycles) and rate performance (1269 mAh g-1 at 4 C) and can deliver a high area capacity above 3 mAh cm-2 at a Si load of 1.36 mg cm-2. The full cells composed of the Si@CMC-10% PDA anodes and lithium iron phosphate (LFP) cathodes can maintain an 80% capacity retention after 50 cycles, demonstrating practical application potential.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [1] A High-Performance Polyurethane-Polydopamine Polymeric Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries
    Ma, Lei
    Niu, Sulin
    Zhao, Fangfang
    Tang, Ruixian
    Zhang, Yu
    Su, Wenda
    Wei, Liangming
    Tang, Gen
    Wang, Yue
    Pang, Aimin
    Li, Wei
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7571 - 7581
  • [2] Effect of Binder Content on Silicon Microparticle Anodes for Lithium-Ion Batteries
    Li, Anita
    Hempel, Jacob L. L.
    Balogh, Michael P. P.
    Cheng, Yang-Tse
    Taub, Alan I. I.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)
  • [3] A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries
    Hu, Shanming
    Cai, Zhixiang
    Huang, Tao
    Zhang, Hongbin
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4311 - 4317
  • [4] Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
    Song, Jiangxuan
    Zhou, Mingjiong
    Yi, Ran
    Xu, Terrence
    Gordin, Mikhail L.
    Tang, Duihai
    Yu, Zhaoxin
    Regula, Michael
    Wang, Donghai
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) : 5904 - 5910
  • [5] A Robust Network Sodium Carboxymethyl Cellulose-Epichlorohydrin Binder for Silicon Anodes in Lithium-Ion Batteries
    Yu, Liming
    Tao, Bowen
    Ma, Lei
    Zhao, Fangfang
    Wei, Liangming
    Tang, Gen
    Wang, Yue
    Guo, Xiang
    LANGMUIR, 2024, 40 (34) : 17930 - 17940
  • [6] A water-soluble binder in high-performance silicon-based anodes for lithium-ion batteries based on sodium carboxymethyl cellulose and waterborne polyurethane
    Sun, Xingshen
    Lin, Xiangyu
    Wen, Yong
    Dong, Fuhao
    Guo, Lizhen
    Song, Zhanqian
    Yang, Zitao
    Liu, He
    Li, Xuequan
    Xu, Xu
    Wang, Hongxiao
    GREEN CHEMISTRY, 2024, 26 (18) : 9874 - 9887
  • [7] Dopamine-modified carboxymethyl cellulose as an improved aqueous binder for silicon anodes in lithium-ion batteries
    Wang, Zechen
    Huang, Tao
    Liu, Zhaolin
    Yu, Aishui
    ELECTROCHIMICA ACTA, 2021, 389
  • [8] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [9] Carboxymethyl Three-Dimensional Cross-Linked Biopolymer Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries
    Cai, Xingyun
    Xu, Jingjing
    Shao, Yaxin
    Cai, Songming
    Hu, Chao
    Lu, Shirong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (09) : 4559 - 4569
  • [10] Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries
    Li, Juanjuan
    Zhang, Guangzhao
    Yang, Yu
    Yao, Dahua
    Lei, Zhiwen
    Li, Shuai
    Deng, Yonghong
    Wang, Chaoyang
    JOURNAL OF POWER SOURCES, 2018, 406 : 102 - 109