High-Temperature Mechanical Properties of NbTaHfTiZrV0.5 Refractory High-Entropy Alloys

被引:1
|
作者
Liu, Zhangquan [1 ]
Shi, Xiaohui [1 ]
Zhang, Min [1 ]
Qiao, Junwei [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab High Entropy Alloys, Taiyuan 030024, Peoples R China
关键词
refractory high-entropy alloy (RHEA); mechanical properties; high-temperature strength; constitutive equation; DEFORMATION-BEHAVIOR; TENSILE BEHAVIOR; STRENGTH; MICROSTRUCTURES; INSTABILITY; DUCTILITY;
D O I
10.3390/e25081124
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The NbTaHfTiZrV0.5 is a refractory multi-principal-element alloy with high strength and good ductility at room temperature. It is important for possible high-temperature applications to investigate the deformation mechanism of the NbTaHfTiZrV0.5 alloy at different temperatures using tensile tests. In this investigation, the tensile tests were conducted at room temperature to 1273 K on sheet materials fabricated by cold rolling combined with annealing treatments. At 473 K, the NbTaHfTiZrV0.5 alloy exhibited a high tensile ductility (12%). At a testing temperature range of 673 similar to 873 K, the ductility was reduced, but the yield strength remained above 800 MPa, which is rare in most other alloys. The TEM investigations revealed that a dislocation slip controlled the plastic deformation, and the degree of deformation was closely related to the dislocation density. The true stress-strain curves of the alloy under different deformation conditions were obtained by tensile deformation at different deformation temperatures (673 similar to 873 K) and strain rates (0.001 similar to 0.0005 s(-1)). Experimental results were utilized to construct the parameters of a constitutive model based on a traditional mathematical model to predict the flow behavior at high temperatures. The excellent high-temperature mechanical properties of the NbTaHfTiZrV0.5 alloy will enable it to be used in several engineering applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys
    Chen, Y. W.
    Li, Y. K.
    Cheng, X. W.
    Wu, C.
    Cheng, B.
    INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION AND AUTOMATION ENGINEERING, 2018, 359
  • [2] Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications
    Wang, M.
    Ma, Z. L.
    Xu, Z. Q.
    Cheng, X. W.
    SCRIPTA MATERIALIA, 2021, 191 : 131 - 136
  • [3] The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity
    Chen, Yiwen
    Li, Yunkai
    Cheng, Xingwang
    Wu, Chao
    Cheng, Bo
    Xu, Ziqi
    MATERIALS, 2018, 11 (02)
  • [4] Development of the γ′ phase strengthened high-temperature high-entropy alloys with excellent mechanical properties
    Wang, Chenglei
    Liang, Chaojie
    Yang, Mujin
    Huang, Chao
    Yao, Zhifu
    Qiu, Bing
    Zhang, Kexiang
    Xie, Yingguan
    Liang, Mulin
    Liu, Weijie
    Yang, Jijie
    Zhou, Shengfeng
    MATERIALS & DESIGN, 2022, 221
  • [5] DESIGN TOOL PREDICTS MECHANICAL PROPERTIES AND HIGH-TEMPERATURE PERFORMANCE OF HIGH-ENTROPY ALLOYS
    Zhong, Yu
    ADVANCED MATERIALS & PROCESSES, 2023, 181 (02): : 17 - 19
  • [6] Microstructure and Mechanical Properties of TaNbVTiAlx Refractory High-Entropy Alloys
    Xiang, Li
    Guo, Wenmin
    Liu, Bin
    Fu, Ao
    Li, Jianbo
    Fang, Qihong
    Liu, Yong
    ENTROPY, 2020, 22 (03)
  • [7] Mechanical properties of refractory high-entropy alloys: Experiments and modeling
    Yao, H. W.
    Qiao, J. W.
    Hawk, J. A.
    Zhou, H. F.
    Chen, M. W.
    Gao, M. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 : 1139 - 1150
  • [8] Lightweight CrxV0.5Nb0.5ZrTi Refractory High-Entropy Alloys: Microstructure and Mechanical Properties
    Yang, Lin
    Yang, Xuelei
    Zhang, Cun
    Gu, Chenxi
    Wang, Lu
    JOM, 2024, : 5991 - 6001
  • [9] High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition
    Gorr, Bronislava
    Mueller, Franz
    Azim, Maria
    Christ, Hans-Juergen
    Mueller, Torsten
    Chen, Hans
    Kauffmann, Alexander
    Heilmaier, Martin
    OXIDATION OF METALS, 2017, 88 (3-4): : 339 - 349
  • [10] High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition
    Bronislava Gorr
    Franz Müller
    Maria Azim
    Hans-Jürgen Christ
    Torsten Müller
    Hans Chen
    Alexander Kauffmann
    Martin Heilmaier
    Oxidation of Metals, 2017, 88 : 339 - 349