Low Mach Number Limit for the Degenerate Navier-Stokes Equations in Presence of Strong Stratification

被引:1
|
作者
Fanelli, Francesco [1 ]
Zatorska, Ewelina [2 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Imperial Coll London, Dept Math, 6M14 Huxley Bldg,South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
GLOBAL WEAK SOLUTIONS; SHALLOW-WATER; INCOMPRESSIBLE LIMIT; COMPRESSIBLE FLUIDS; SINGULAR LIMITS; SCALE ANALYSIS; EXISTENCE; MODELS; LUBRICATION; SYSTEMS;
D O I
10.1007/s00220-022-04624-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the low Mach and low Froude numbers limit for the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient, in the strong stratification regime. We consider the case of a general pressure law with singular component close to vacuum, and general ill-prepared initial data. We perform our study in the three-dimensional periodic domain. We rigorously justify the convergence to the generalised anelastic approximation, which is used extensively to model atmospheric flows.
引用
收藏
页码:1463 / 1506
页数:44
相关论文
共 50 条