Assessing landslide susceptibility based on the random forest model and multi-source heterogeneous data

被引:4
|
作者
Li, Mengxia [1 ,2 ]
Wang, Haiying [1 ,2 ,3 ]
Chen, Jinlong [4 ]
Zheng, Kang [5 ]
机构
[1] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China
[2] Henan Univ, Henan Technol Innovat Ctr Spatio Temporal Big Data, Zhengzhou 450046, Peoples R China
[3] Minist Educ, Key Lab Geospatial Technol Middle & Lower Yellow R, Kaifeng 475004, Peoples R China
[4] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[5] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
关键词
Landslide susceptibility map; Landslide factor analysis; Random Forest; Dengfeng; LOGISTIC-REGRESSION; DECISION TREE; CLASSIFICATION; PERFORMANCE; ALGORITHMS; RESOLUTION; NETWORKS;
D O I
10.1016/j.ecolind.2024.111600
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Landslides pose significant threats to human lives and property. The usefulness of mapping susceptibility in predicting these events, by providing early warning and implementing preventive measures, cannot be overstated. This study relies on the well-established grid management mechanism in Dengfeng and utilizes historical data collected from field surveys. Combining multi-source heterogeneous data obtained by aerospace technology, and using random forest model and feature selection, a landslide sensitivity assessment system based on spaceground collaboration was constructed. The study categorized areas according to their susceptibility to landslides using probabilistic forecasts. Specifically, regions were classified into four susceptibility categories: very low (landslide probabilities below 0.26), low (0.26 to 0.38), moderate (0.38 to 0.50), and high (above 0.50). This resulted in a comprehensive landslide susceptibility map that was rigorously analyzed and assessed. The findings indicate that: (1) high, moderate, low, and very low susceptibility areas for landslides in Dengfeng are 127.36, 527.49, 385.67, and 184.03 km2, respectively, accounting for 10.40 %, 43.08 %, 31.49 %, and 15.03 % of the total area. (2) The spatial distribution of landslides in Dengfeng exhibits a "multi-core clustering-radiate distribution" pattern, from the peripheral areas to the center. (3) The spatial distribution of high, moderate, low, and very low susceptibility areas for landslides is primarily influenced by factors such as distance from faults, elevation, and distance from rivers. The study has constructed a landslide sensitivity assessment system based on space-ground collaboration that can provide replicable research methods, provide scientific support for disaster reduction and prevention work, and reduce casualties and property losses caused by landslides.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Population spatialization in Zhengzhou city based on multi-source data and random forest model
    Liu, Lingling
    Cheng, Gang
    Yang, Jie
    Cheng, Yushu
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [2] LANDSLIDE MAPPING AND ANALYSIS USING MULTI-SOURCE DATA AND ONE-CLASS RANDOM FOREST
    Liu, Junru
    Li, Peijun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9326 - 9329
  • [3] Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data
    Cao, Chen
    Zhu, Kuanxing
    Xu, Peihua
    Shan, Bo
    Yang, Guang
    Song, Shengyuan
    JOURNAL OF CLEANER PRODUCTION, 2022, 368
  • [4] Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data
    Cao, Chen
    Zhu, Kuanxing
    Xu, Peihua
    Shan, Bo
    Yang, Guang
    Song, Shengyuan
    Journal of Cleaner Production, 2022, 368
  • [5] Multi-source heterogeneous data fusion model based on fuzzy mathematics
    Zeng, Qiao
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2023, 23 (04) : 2165 - 2178
  • [6] A Hybrid Recommendation Model Based on Fusion of Multi-Source Heterogeneous Data
    Ji Z.-Y.
    Pi H.-Y.
    Yao W.-N.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (01): : 126 - 132
  • [7] An Integration Model of Multi-Source Heterogeneous Audit Data
    Li Chunqiang
    Chai Weiyan
    Chen Linan
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRONIC SCIENCE AND AUTOMATION CONTROL, 2015, 20 : 262 - 266
  • [8] Research on Multi-Source Data Fusion Urban Functional Area Identification Method Based on Random Forest Model
    Wang, Yue
    Li, Cailin
    Zhang, Hongjun
    Lu, Yihui
    Guo, Baoyun
    Wei, Xianlong
    Hai, Zhao
    SUSTAINABILITY, 2025, 17 (02)
  • [9] A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data
    Wang, Qian
    Zhao, Lin
    Wang, Mali
    Wu, Jinjia
    Zhou, Wei
    Zhang, Qipeng
    Deng, Meie
    REMOTE SENSING, 2022, 14 (19)
  • [10] Multi-source Heterogeneous Data Fusion Model Based on FC-SAE
    Zhang, Hong
    Jiang, Kun
    Cheng, Chuanqi
    Cao, Jie
    Zhang, Wenyue
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (07): : 1473 - 1481