Network traffic reduction with spatially flexible optical networks using machine learning techniques

被引:0
|
作者
Wang, Aiqiang [1 ]
机构
[1] Henan Polytech, Coll Modern Informat Technol, Zhengzhou 450046, Henan, Peoples R China
关键词
Network traffic analysis; Resource allocation; Energy optimization; Flexible optical networks; Machine learning; QUANTUM; LEARNABILITY; COMPLEXITY; HARDNESS;
D O I
10.1007/s11082-023-05275-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic forecasting and the utilisation of historical data are essential for intelligent and efficient resource management, particularly in optical data centre networks (ODCNs) that serve a wide range of applications. In this research, we investigate the challenge of traffic aggregation in ODCNs by making use of exact or predictable knowledge of application -certain data and demands, such as waiting time, bandwidth, traffic history, and latency. Since ODCNs process a wide range of flows (including long/elephant and short/mice), we employ machine learning (ML) to foresee time -varying traffic and connection blockage. In order to improve energy use and resource distribution in spatially mobile optical networks, this research proposes a novel method of network traffic analysis based on machine learning. Here, we leverage network monitoring to inform resource allocation decisions, with the goal of decreasing traffic levels using short-term space multiplexing multitier reinforcement learning. Then, the energy is optimised by using dynamic gradient descent division multiplexing. Various metrics, including accuracy, NSE (normalised square error), validation loss, mean average error, and probability of bandwidth blockage, are used in the experiment. Finally, using the primal-dual interior -point approach, we investigate how much weight each slice should have depending on the predicted results, which include the traffic of each slice and the distribution of user load.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Retraction Note: Network traffic reduction with spatially flexible optical networks using machine learning techniques
    Aiqiang Wang
    Optical and Quantum Electronics, 56 (10)
  • [2] Traffic Profiling in Mobile Networks Using Machine Learning Techniques
    Maciejewski, Henryk
    Sztukowski, Mateusz
    Chowanski, Bartlomiej
    DIGITAL INFORMATION PROCESSING AND COMMUNICATIONS, PT 1, 2011, 188 : 132 - +
  • [3] QUIC Network Traffic Classification Using Ensemble Machine Learning Techniques
    Almuhammadi, Sultan
    Alnajim, Abdullatif
    Ayub, Mohammed
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [4] Anomaly Detection in Network Traffic Using Advanced Machine Learning Techniques
    Ness, Stephanie
    Eswarakrishnan, Vishwanath
    Sridharan, Harish
    Shinde, Varun
    Janapareddy, Naga Venkata Prasad
    Dhanawat, Vineet
    IEEE ACCESS, 2025, 13 : 16133 - 16149
  • [5] Network Traffic Classification Using Machine Learning for Software Defined Networks
    Kuranage, Menuka Perera Jayasuriya
    Piamrat, Kandaraj
    Hamma, Salima
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 28 - 39
  • [6] Tracking User Application Activity by using Machine Learning Techniques on Network Traffic
    Fathi-Kazerooni, Sina
    Kaymak, Yagiz
    Rojas-Cessa, Roberto
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 405 - 410
  • [7] Network Traffic Classification Techniques and Comparative Analysis Using Machine Learning Algorithms
    Shafiq, Muhammad
    Yu, Xiangzhan
    Laghari, Asif Ali
    Yao, Lu
    Karn, Abin Kumar
    Abdessamia, Oudil
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 2451 - 2455
  • [8] Long-term Traffic Forecasting in Optical Networks Using Machine Learning
    Walkowiak, Krzysztof
    Szostak, Daniel
    Wlodarczyk, Adam
    Kasprzak, Andrzej
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, 69 (04) : 751 - 762
  • [9] Machine Learning-Based Cellular Traffic Prediction Using Data Reduction Techniques
    Nashaat, Heba
    Mohammed, Nihal H.
    Abdel-Mageid, Salah M.
    Rizk, Rawya Y.
    IEEE ACCESS, 2024, 12 : 58927 - 58939
  • [10] Software defined networking based network traffic classification using machine learning techniques
    Salau, Ayodeji Olalekan
    Beyene, Melesew Mossie
    SCIENTIFIC REPORTS, 2024, 14 (01):