A NEW ASPECT OF CHEBYSHEV'S BIAS FOR ELLIPTIC CURVES OVER FUNCTION FIELDS
被引:1
|
作者:
Kaneko, Ikuya
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USACALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Kaneko, Ikuya
[1
]
Koyama, Shin-Ya
论文数: 0引用数: 0
h-index: 0
机构:
Toyo Univ, Dept Biomed Engn, 2100 Kujirai, Kawagoe, Saitama 3508585, JapanCALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Koyama, Shin-Ya
[2
]
机构:
[1] CALTECH, Div Phys Math & Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA
Deep Riemann Hypothesis;
Grand Riemann Hypothesis;
Birch- Swinnerton-Dyer conjecture;
L-functions;
elliptic curves;
function fields;
Chebyshev bias;
D O I:
10.1090/proc/16461
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
. This work addresses the prime number races for non-constant elliptic curves E over function fields. We prove that if rank(E) > 0, then there exist Chebyshev biases towards being negative, and otherwise there exist Chebyshev biases towards being positive. The key input is the convergence of the partial Euler product at the centre, which follows from the Deep Riemann Hypothesis over function fields.
机构:
Pontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna, Santiago 4860, ChilePontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna, Santiago 4860, Chile