Nonlinear anisotropic viscoelasticity

被引:11
|
作者
Sadik, Souhayl [1 ]
Yavari, Arash [2 ,3 ]
机构
[1] Aarhus Univ, Dept Mech & Prod Engn, DK-8000 Aarhus C, Denmark
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Nonlinear viscoelasticity; Multiplicative decomposition; Intermediate configuration; Anisotropic solids; ELASTIC-PLASTIC DEFORMATION; NON-LINEAR MATERIALS; MULTIPLICATIVE DECOMPOSITION; CONSTITUTIVE-EQUATIONS; CONTINUUM FORMULATION; FINITE; MODEL; BEHAVIOR; REPRESENTATIONS; THERMODYNAMICS;
D O I
10.1016/j.jmps.2023.105461
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we revisit the mathematical foundations of nonlinear viscoelasticity. We study the underlying geometry of viscoelastic deformations, and in particular, the intermediate configuration. Starting from the direct multiplicative decomposition of the deformation gradient F = (FFv)-F-e, into elastic and viscous distortions F-e and F-v, respectively, we point out that F-v can be either a material tensor (F-e is a two-point tensor) or a two-point tensor (F-e is a spatial tensor). We show, based on physical grounds, that the second choice is unacceptable. It is assumed that the free energy density is the sum of an equilibrium and a non-equilibrium part. The symmetry transformations and their action on the total, elastic, and viscous deformation gradients are carefully discussed. Following a two-potential approach, the governing equations of nonlinear viscoelasticity are derived using the Lagrange-d'Alembert principle. We discuss the constitutive and kinetic equations for compressible and incompressible isotropic, transversely isotropic, orthotropic, and monoclinic viscoelastic solids. We finally semi-analytically study creep and relaxation in three examples of universal deformations.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] A Numerical Scheme for Anisotropic Reactive Nonlinear Viscoelasticity
    Ateshian, Gerard A.
    Petersen, Courtney A.
    Maas, Steve A.
    Weiss, Jeffrey A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (01):
  • [2] Anisotropic viscoelasticity of polymers
    V. S. Volkov
    Polymer Science Series A, 2012, 54 : 744 - 751
  • [3] Anisotropic viscoelasticity of polymers
    Volkov, V. S.
    POLYMER SCIENCE SERIES A, 2012, 54 (09) : 744 - 751
  • [4] A Numerical Scheme for Anisotropic Reactive Nonlinear Viscoelasticity (vol 145, 011004, 2023)
    Ateshian, Gerard A.
    Petersen, Courtney A.
    Maas, Steve A.
    Weiss, Jeffrey A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (10):
  • [5] On the basic laws of anisotropic viscoelasticity
    Valery S. Volkov
    Valery G. Kulichikhin
    Rheologica Acta, 2007, 46 : 1131 - 1138
  • [6] OBSERVATIONS ON LINEAR ANISOTROPIC VISCOELASTICITY
    HALPIN, JC
    PAGANO, NJ
    JOURNAL OF COMPOSITE MATERIALS, 1968, 2 (01) : 68 - &
  • [7] Viscoelasticity of anisotropic polymer systems
    Volkov, VS
    Tereshin, AK
    Kulichikhin, VG
    POLYMER SCIENCE SERIES A, 2004, 46 (11) : 1141 - 1152
  • [8] Wave Propagation in Anisotropic Viscoelasticity
    Hanyga, Andrzej
    JOURNAL OF ELASTICITY, 2016, 122 (02) : 231 - 254
  • [9] On the basic laws of anisotropic viscoelasticity
    Volkov, Valery S.
    Kulichikhin, Valery G.
    RHEOLOGICA ACTA, 2007, 46 (08) : 1131 - 1138
  • [10] Wave Propagation in Anisotropic Viscoelasticity
    Andrzej Hanyga
    Journal of Elasticity, 2016, 122 : 231 - 254