Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians

被引:0
|
作者
Li, Jing [1 ]
Ding, Hai-Tao [2 ]
Zhang, Dan-Wei [1 ]
机构
[1] South China Normal Univ, Sch Phys, Minist Educ, Key Lab Atom & Subatom Struct & Quantum Control, Guangzhou 510006, Peoples R China
[2] Nanjing Univ, Sch Phys, Nat Key Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum Fisher information; parameter estimation; non-Hermitian systems; topological states; TIME SYMMETRY-BREAKING;
D O I
10.7498/aps.72.20230862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum Fisher information bounds the ultimate precision limit in the parameter estimation and has important applications in quantum metrology. In recent years, the theoretical and experimental studies of non Hermitian Hamiltonians realized in quantum systems have attracted wide attention. Here, the parameter estimation based on eigenstates of non-Hermitian Hamiltonians is investigated, and the corresponding quantum Fisher information and quantum Cramer-Rao bound for the single-parameter and two-parameter estimations are given. In particular, the quantum Fisher information about estimating intrinsic momentum and external parameters in the non-reciprocal and gain-and-loss Su-Schrieffer-Heeger models, and non-Hermitian versions of the quantum Ising chain, Chern-insulator model and two-level system are calculated and analyzed. For these non-Hermitian models, the results show that in the case of single-parameter estimation in these non-Hermitian models, the quantum Fisher information increases significantly in the gapless regime and near the exceptional points, which can improve the accuracy limit of parameter estimation. For the two-parameter estimation, the determinant of the quantum Fisher information matrix also increases obviously near the gapless and exceptional points. In addition, a higher overall accuracy can be achieved in the topological regime than in the trivial regime, and the topological bound in two-parameter estimation can be determined by the Chern number.
引用
收藏
页数:12
相关论文
共 54 条
  • [1] Generalized limits for single-parameter quantum estimation
    Boixo, Sergio
    Flammia, Steven T.
    Caves, Carlton M.
    Geremia, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (09)
  • [2] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [3] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [4] Critical parametric quantum sensing
    Di Candia, R.
    Minganti, F.
    Petrovnin, K. V.
    Paraoanu, G. S.
    Felicetti, S.
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [5] Extracting non-Abelian quantum metric tensor and its related Chern numbers
    Ding, Hai-Tao
    Zhu, Yan-Qing
    He, Peng
    Liu, Yu-Guo
    Wang, Jian-Te
    Zhang, Dan-Wei
    Zhu, Shi-Liang
    [J]. PHYSICAL REVIEW A, 2022, 105 (01)
  • [6] Gao XE, 2022, ACTA PHYS SIN-CH ED, V71, DOI 10.7498/aps.71.20221825
  • [7] Giovannetti V, 2011, NAT PHOTONICS, V5, P222, DOI [10.1038/nphoton.2011.35, 10.1038/NPHOTON.2011.35]
  • [8] Berry curvature as a lower bound for multiparameter estimation
    Guo, Wei
    Zhong, Wei
    Jing, Xiao-Xing
    Fu, Li-Bin
    Wang, Xiaoguang
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [9] Emergent phase transitions in a cluster Ising model with dissipation
    Guo, Zheng-Xin
    Yu, Xue-Jia
    Hu, Xi-Dan
    Li, Zhi
    [J]. PHYSICAL REVIEW A, 2022, 105 (05)
  • [10] Criticality-based quantum metrology in the presence of decoherence
    He, Wan-Ting
    Lu, Cong-Wei
    Yao, Yi-Xuan
    Zhu, Hai-Yuan
    Ai, Qing
    [J]. FRONTIERS OF PHYSICS, 2023, 18 (03)