Classification of acute leukaemias with a hybrid use of feature selection algorithms and deep learning-based architectures

被引:2
|
作者
Akalin, Fatma [1 ]
Yumusak, Nejat [2 ]
机构
[1] Sakarya Univ, Bilisim Sistemleri Muhendisligi Bolumu, Bilgisayar & Bilisim Bilimleri Fak, Sakarya, Turkiye
[2] Sakarya Univ, Bilgisayar Muhendisligi Bolumu, Bilgisayar & Bilisim Bilimleri Fak, Sakarya, Turkiye
关键词
Microarray technology; Nature-inspired optimization algorithms; Continuous wavelet transform technique; Deep graph convolutional neural network approach; Classification of ALL and AML malignancies; MOLECULAR CLASSIFICATION; CANCER;
D O I
10.5505/pajes.2022.62282
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microarray technology which is preferred in the fields of medicine and biology is an analysis method that produces quantitative or qualitative data. It has a strong potential for revealing and interpreting patterns between genes. To reveal this potential, it is possible to provide a molecular evaluation of cancer diseases associated with genes. However, microarray datasets have a high dimensional structure. This is known as the curse of dimensionality in machine learning. The main aim is to give a helpful idea to the experts by using computer-aided systems to facilitate the evaluation process on microarray datasets. In this study, a high-dimensional microarray dataset is analyzed for the classification of acute leukaemias. In the first phase of the study, ant colony, whale and particle swarm optimization algorithms are used to select disease-related genes from the dataset. Selected potential genes were evaluated with classical machine learning algorithms. These genes obtained in the second stage of the study were expressed as spectrograms by the wavelet transform method. In the third stage of the study, the CLAHE method is used to improve the local contrast in the spectrograms. Finally, the obtained improved spectrograms are classified by transfer learning architectures and DGCNN (deep graph convolutional neural network) approach. The maximum success rates obtained as a result of the classification of the spectral density information of the selected genes using the ant, particle swarm and whale feature selection algorithms with the DGCNN approach are found to be 93.33%, 86.6% and 86.6%, respectively.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [1] Optimal Feature Selection for Learning-Based Algorithms for Sentiment Classification
    Wang, Zhaoxia
    Lin, Zhiping
    COGNITIVE COMPUTATION, 2020, 12 (01) : 238 - 248
  • [2] Optimal Feature Selection for Learning-Based Algorithms for Sentiment Classification
    Zhaoxia Wang
    Zhiping Lin
    Cognitive Computation, 2020, 12 : 238 - 248
  • [3] Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds
    Janneh, Lamin L.
    Youngjun, Zhang
    Hydara, Mbemba
    Cui, Zhongwei
    ICT EXPRESS, 2024, 10 (01): : 118 - 124
  • [4] Deep learning-based hybrid sentiment analysis with feature selection using optimization algorithm
    D. Anand Joseph Daniel
    M. Janaki Meena
    Multimedia Tools and Applications, 2023, 82 : 43273 - 43296
  • [5] Deep learning-based hybrid sentiment analysis with feature selection using optimization algorithm
    Daniel, D. Anand Joseph
    Meena, M. Janaki
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 43273 - 43296
  • [6] Effective Feature Selection and Deep Learning-Based Classification for Non-Intrusive Load Monitoring
    Barbhuyan, Mamoon Elahi
    Goswami, Pradyut Kumar
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023, 51 (19) : 2293 - 2306
  • [7] Deep Learning-Based Feature Representation for AD/MCI Classification
    Suk, Heung-Il
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 583 - 590
  • [8] Feature-based and Deep Learning-based Classification of Environmental Sound
    Jatturas, Chinnavat
    Chokkoedsakul, Sornsawan
    Ayudhya, Pisitpong Devahasting Na
    Pankaew, Sukit
    Sopavanit, Cherdkul
    Asdornwised, Widhyakorn
    2019 4TH IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - ASIA (IEEE ICCE-ASIA 2019), 2019, : 126 - 130
  • [9] A Comparative Text Classification Study with Deep Learning-Based Algorithms
    Koksal, Omer
    Akgul, Ozlem
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 387 - 391
  • [10] DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
    Rahaman, Md Mamunur
    Li, Chen
    Yao, Yudong
    Kulwa, Frank
    Wu, Xiangchen
    Li, Xiaoyan
    Wang, Qian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136