An unsupervised intelligent fault diagnosis research for rotating machinery based on NND-SAM method

被引:3
|
作者
Zhang, Haifeng [1 ,2 ]
Zou, Fengqian [1 ]
Sang, Shengtian [1 ]
Li, Yuqing [1 ]
Li, Xiaoming [1 ]
Hu, Kongzhi [1 ]
Chen, Yufeng [3 ]
机构
[1] Harbin Inst Technol, MEMS Ctr, Harbin 150001, Peoples R China
[2] Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Peoples R China
[3] Peoples Liberat Army AF Harbin Flight Acad, Harbin, Peoples R China
关键词
fault diagnosis; domain adversarial; rotating machinery; transfer learning; BEARINGS; PROGNOSTICS;
D O I
10.1088/1361-6501/aca98f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Currently, intelligent fault diagnostics of rotating machinery have significantly contributed to mechanical health monitoring. However, real-world labeled data obtained from high-value equipment such as gas turbine units, pumps, and other rotating components are occasionally insufficient for model training. This article proposes an unsupervised deep transfer learning model that can directly extract features from the data itself, thus reducing the number of training samples required. The well-designed neural network with a domain-specific antagonism mechanism aligns features between the source and target domains and so makes data-driven decisions more efficiently. The parameter-free gradient reversal layer is used as an optimizer, considerably reducing the cross-domain discrepancy and accelerating convergence. The average multi-classification accuracy under transferable conditions reaches 97%, 91%, and 95% over three cases of fault diagnosis. Moreover, the time consumption of the system improves by more than 3.5% compared to existing models. The results reveal that the suggested strategy is suitable for a challenging unlabeled dataset and represents a significant improvement over existing unsupervised learning techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [2] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [3] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [4] Research on HHT-based fault diagnosis method for rotating machinery
    Hu, Jin-Song
    Yang, Shi-Xi
    Dongli Gongcheng/Power Engineering, 2004, 24 (06):
  • [5] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [6] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    Applied Soft Computing, 2022, 115
  • [7] Unsupervised feature learning with reconstruction sparse filtering for intelligent fault diagnosis of rotating machinery
    Zhang, Zhiqiang
    Yang, Qingyu
    APPLIED SOFT COMPUTING, 2022, 115
  • [8] An intelligent fault diagnosis method for rotating machinery based on genetic algorithm and classifier ensemble
    Dou, Dongyang
    Xue, Bin
    He, Min
    Jiang, Jian
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4178 - 4181
  • [9] Research on fault diagnosis of rotating machinery based on MSST
    Huang C.
    Chen H.
    Lei W.
    Li L.
    Meng Y.
    Zhao J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (08): : 1 - 8and27
  • [10] A visual vibration characterization method for intelligent fault diagnosis of rotating machinery
    Peng, Cong
    Gao, Haining
    Liu, Xiaoyue
    Liu, Bin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192