Enhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTE

被引:3
|
作者
Cakir, Mert Yilmaz [1 ]
Sirin, Yahya [1 ]
机构
[1] Istanbul Sabahattin Zaim Univ, Comp Sci & Engn, TR-34303 Istanbul, Turkiye
关键词
Fraud detection; Noise factor encoding; Autoencoder; Variational autoencoder; Contractive autoencoder; SMOTE; CREDIT; DIMENSIONALITY;
D O I
10.1007/s10115-023-02016-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fraud detection is a critical task across various domains, requiring accurate identification of fraudulent activities within vast arrays of transactional data. The significant challenges in effectively detecting fraud stem from the inherent class imbalance between normal and fraudulent instances. To address this issue, we propose a novel approach that combines autoencoder-based noise factor encoding (NFE) with the synthetic minority oversampling technique (SMOTE). Our study evaluates the efficacy of this approach using three datasets with severe class imbalance. We compare three autoencoder variants-autoencoder (AE), variational autoencoder (VAE), and contractive autoencoder (CAE)-enhanced by the NFE technique. This technique involves training autoencoder models on real fraud data with an added noise factor during the encoding process, followed by combining this altered data with genuine fraud data. Subsequently, SMOTE is employed for oversampling. Through extensive experimentation, we assess various evaluation metrics. Our results demonstrate the superiority of the autoencoder-based NFE approach over the use of traditional oversampling methods like SMOTE alone. Specifically, the AE-NFE method outperforms other techniques in most cases, although the VAE-NFE and CAE-NFE methods also exhibit promising results in specific scenarios. This study highlights the effectiveness of leveraging autoencoder-based NFE and SMOTE for fraud detection. By addressing class imbalance and enhancing the performance of fraud detection models, our approach enables more accurate identification and prevention of fraudulent activities in real-world applications.
引用
收藏
页码:635 / 652
页数:18
相关论文
共 50 条
  • [1] Enhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTE
    Mert Yılmaz Çakır
    Yahya Şirin
    Knowledge and Information Systems, 2024, 66 : 635 - 652
  • [2] A Lightweight Deep Autoencoder-based Approach for Unsupervised Anomaly Detection
    Dlamini, Gcinizwe
    Galieva, Rufina
    Fahim, Muhammad
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [3] Autoencoder-based Intrusion Detection System
    Kamalov, Firuz
    Zgheib, Rita
    Leung, Ho Hon
    Al-Gindy, Ahmed
    Moussa, Sherif
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 707 - 711
  • [4] Autoencoder-based Network Anomaly Detection
    Chen, Zhaomin
    Yeo, Chai Kiat
    Lee, Bu Sung
    Lau, Chiew Tong
    2018 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2018,
  • [5] A Variational AutoEncoder-Based Relational Model for Cost-Effective Automatic Medical Fraud Detection
    Chen, Jie
    Hu, Xiaonan
    Yi, Dongyi
    Alazab, Mamoun
    Li, Jianqiang
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (04) : 3408 - 3420
  • [6] An improved autoencoder-based approach for anomaly detection in industrial control systems
    Aslam, Muhammad Muzamil
    Tufail, Ali
    De Silva, Liyanage Chandratilak
    Haji Mohd Apong, Rosyzie Anna Awg
    Namoun, Abdallah
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [7] A sparse autoencoder-based approach for cell outage detection in wireless networks
    Ziang MA
    Zhiwen PAN
    Nan LIU
    ScienceChina(InformationSciences), 2021, 64 (08) : 253 - 254
  • [8] A sparse autoencoder-based approach for cell outage detection in wireless networks
    Ziang Ma
    Zhiwen Pan
    Nan Liu
    Science China Information Sciences, 2021, 64
  • [9] A sparse autoencoder-based approach for cell outage detection in wireless networks
    Ma, Ziang
    Pan, Zhiwen
    Liu, Nan
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (08)
  • [10] TAElog: A Novel Transformer AutoEncoder-Based Log Anomaly Detection Method
    Zhao, Changzhi
    Huang, Kezhen
    Wu, Di
    Han, Xueying
    Du, Dan
    Zhou, Yutian
    Lu, Zhigang
    Liu, Yuling
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT II, 2024, 14527 : 37 - 52