Devil is in Channels: Contrastive Single Domain Generalization for Medical Image Segmentation

被引:2
|
作者
Hu, Shishuai [1 ]
Liao, Zehui [1 ]
Xia, Yong [1 ]
机构
[1] Northwestern Polytech Univ, Natl Engn Lab Integrated Aerospace Ground Ocean B, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Single domain generalization; Medical image segmentation; Contrastive learning; Feature disentanglement; ADAPTATION;
D O I
10.1007/978-3-031-43901-8_2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning-based medical image segmentation models suffer from performance degradation when deployed to a new healthcare center. To address this issue, unsupervised domain adaptation and multi-source domain generalization methods have been proposed, which, however, are less favorable for clinical practice due to the cost of acquiring target-domain data and the privacy concerns associated with redistributing the data from multiple source domains. In this paper, we propose a Channel-level Contrastive Single Domain Generalization (C(2)SDG) model for medical image segmentation. In C(2)SDG, the shallower features of each image and its style-augmented counterpart are extracted and used for contrastive training, resulting in the disentangled style representations and structure representations. The segmentation is performed based solely on the structure representations. Our method is novel in the contrastive perspective that enables channel-wise feature disentanglement using a single source domain. We evaluated C(2)SDG against six SDG methods on a multi-domain joint optic cup and optic disc segmentation benchmark. Our results suggest the effectiveness of each module in C(2)SDG and also indicate that C(2)SDG outperforms the baseline and all competing methods with a large margin. The code is available at https://github.com/ShishuaiHu/CCSDG.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 50 条
  • [1] Adversarial Consistency for Single Domain Generalization in Medical Image Segmentation
    Xu, Yanwu
    Xie, Shaoan
    Reynolds, Maxwell
    Ragoza, Matthew
    Gong, Mingming
    Batmanghelich, Kayhan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 671 - 681
  • [2] Rethinking Data Augmentation for Single-Source Domain Generalization in Medical Image Segmentation
    Su, Zixian
    Yao, Kai
    Yang, Xi
    Huang, Kaizhu
    Wang, Qiufeng
    Sun, Jie
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2366 - 2374
  • [3] Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation
    Li, Heng
    Li, Haojin
    Zhao, Wei
    Fu, Huazhu
    Su, Xiuyun
    Hu, Yan
    Liu, Jiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 127 - 136
  • [4] Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation
    Ouyang, Cheng
    Chen, Chen
    Li, Surui
    Li, Zeju
    Qin, Chen
    Bai, Wenjia
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) : 1095 - 1106
  • [5] Source domain prior-assisted segment anything model for single domain generalization in medical image segmentation
    Dong, Wenhui
    Du, Bo
    Xu, Yongchao
    IMAGE AND VISION COMPUTING, 2024, 150
  • [6] Domain Generalization in Medical Image Segmentation via Meta-Learners
    Oliveira, Hugo
    Cesar, Roberto M., Jr.
    Gama, Pedro H. T.
    dos Santos, Jefersson A.
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 288 - 293
  • [7] CDDSA: Contrastive domain disentanglement and style augmentation for generalizable medical image segmentation
    Gu, Ran
    Wang, Guotai
    Lu, Jiangshan
    Zhang, Jingyang
    Lei, Wenhui
    Chen, Yinan
    Liao, Wenjun
    Zhang, Shichuan
    Li, Kang
    Metaxas, Dimitris N.
    Zhang, Shaoting
    MEDICAL IMAGE ANALYSIS, 2023, 89
  • [8] Domain generalization for mammographic image analysis with contrastive learning
    Li, Zheren
    Cui, Zhiming
    Zhang, Lichi
    Wang, Sheng
    Lei, Chenjin
    Ouyang, Xi
    Chen, Dongdong
    Zhao, Xiangyu
    Liu, Chunling
    Liu, Zaiyi
    Gu, Yajia
    Shen, Dinggang
    Cheng, Jie-Zhi
    Computers in Biology and Medicine, 2025, 185
  • [9] Supervised Contrastive Embedding for Medical Image Segmentation
    Lee, Sangwoo
    Lee, Yejin
    Lee, Geongyu
    Hwang, Sangheum
    IEEE ACCESS, 2021, 9 : 138403 - 138414
  • [10] CONTRASTIVE TRANSLATION LEARNING FOR MEDICAL IMAGE SEGMENTATION
    Zeng, Wankang
    Fan, Wenkang
    Shen, Dongfang
    Chen, Yinran
    Luo, Xiongbiao
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2395 - 2399