Improving Predicate Representation in Scene Graph Generation by Self-Supervised Learning

被引:0
|
作者
Hasegawa, So [1 ]
Hiromoto, Masayuki [1 ]
Nakagawa, Akira [1 ]
Umeda, Yuhei [1 ]
机构
[1] Fujitsu Ltd, Tokyo, Japan
关键词
D O I
10.1109/WACV56688.2023.00276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation (SGG) aims to understand sophisticated visual information by detecting triplets of subject, object, and their relationship (predicate). Since the predicate labels are heavily imbalanced, existing supervised methods struggle to improve accuracy for the rare predicates due to insufficient labeled data. In this paper, we propose SePiR, a novel self-supervised learning method for SGG to improve the representation of rare predicates. We first train a relational encoder by contrastive learning without using predicate labels, and then fine-tune a predicate classifier with labeled data. To apply contrastive learning to SGG, we newly propose data augmentation in which subject-object pairs are augmented by replacing their visual features with those from other images having the same object labels. By such augmentation, we can increase the variation of the visual features while keeping the relationship between the objects. Comprehensive experimental results on the Visual Genome dataset show that the SGG performance of SePiR is comparable to the state-of-the-art, and especially with the limited labeled dataset, our method significantly outperforms the existing supervised methods. Moreover, SePiR's improved representation enables the model architecture simpler, resulting in 3.6x and 6.3x reduction of the parameters and inference time from the existing method, independently.
引用
收藏
页码:2739 / 2748
页数:10
相关论文
共 50 条
  • [1] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [2] Self-supervised Consensus Representation Learning for Attributed Graph
    Liu, Changshu
    Wen, Liangjian
    Kang, Zhao
    Luo, Guangchun
    Tian, Ling
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2654 - 2662
  • [3] Self-supervised Graph Representation Learning with Variational Inference
    Liao, Zihan
    Liang, Wenxin
    Liu, Han
    Mu, Jie
    Zhang, Xianchao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 116 - 127
  • [4] Self-supervised graph representation learning via bootstrapping
    Che, Feihu
    Yang, Guohua
    Zhang, Dawei
    Tao, Jianhua
    Liu, Tong
    NEUROCOMPUTING, 2021, 456 (456) : 88 - 96
  • [5] Simple Self-supervised Multiplex Graph Representation Learning
    Mo, Yujie
    Chen, Yuhuan
    Peng, Liang
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3301 - 3309
  • [6] Self-Supervised Representation Learning via Latent Graph Prediction
    Xie, Yaochen
    Xu, Zhao
    Ji, Shuiwang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [7] Self-Supervised Graph Representation Learning via Topology Transformations
    Gao, Xiang
    Hu, Wei
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4202 - 4215
  • [8] Predicate Correlation Learning for Scene Graph Generation
    Tao, Leitian
    Mi, Li
    Li, Nannan
    Cheng, Xianhang
    Hu, Yaosi
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4173 - 4185
  • [9] Generative Subgraph Contrast for Self-Supervised Graph Representation Learning
    Han, Yuehui
    Hui, Le
    Jiang, Haobo
    Qian, Jianjun
    Xie, Jin
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 91 - 107
  • [10] Self-Supervised Graph Representation Learning via Information Bottleneck
    Gu, Junhua
    Zheng, Zichen
    Zhou, Wenmiao
    Zhang, Yajuan
    Lu, Zhengjun
    Yang, Liang
    SYMMETRY-BASEL, 2022, 14 (04):