Sharp power-type Heronian and Lehmer means inequalities for the complete elliptic integrals

被引:3
|
作者
Zhao, Tie-hong [1 ]
Chu, Yu-ming [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
power-type Heronian mean; Lehmer means; complete elliptic integrals; TRANSFORMATION INEQUALITIES; HYPERGEOMETRIC-FUNCTIONS; CONVEXITY PROPERTIES; REFINEMENTS; BOUNDS;
D O I
10.1007/s11766-023-4223-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we prove that the inequalities H-p(K(r), epsilon(r)) > pi/2, Lq(K(r, epsilon(r)) > pi/2 hold for all r is an element of (0; 1) if and only if p >= -3/4 and q >= 3/4, where H-p(a; b) and L-q (a,b) are respectively the p-th power-type Heronian mean and q -th Lehmer mean of a and b, and K (r and epsilon (r) are respectively the complete elliptic integrals of the first and second kinds.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 50 条
  • [1] Sharp power-type Heronian and Lehmer means inequalities for the complete elliptic integrals
    Tie-hong Zhao
    Yu-ming Chu
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 467 - 474
  • [2] Sharp power-type Heronian and Lehmer means inequalities for the complete elliptic integrals
    ZHAO Tie-hong
    CHU Yu-ming
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2023, 38 (03) : 467 - 474
  • [3] Optimal power-type Heronian and Lehmer means inequalities for the complete elliptic integrals
    Chen, Hai-sheng
    Zhu, Ye-cheng
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [4] Sharp power-type Heronian mean bounds for the Sandor and Yang means
    Zhou, Shuang-Shuang
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [5] Sharp power-type Heronian mean bounds for the Sándor and Yang means
    Shuang-Shuang Zhou
    Wei-Mao Qian
    Yu-Ming Chu
    Xiao-Hui Zhang
    [J]. Journal of Inequalities and Applications, 2015
  • [6] SHARP INEQUALITIES FOR THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS
    Jiang, Wei-Dong
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (02) : 388 - 400
  • [7] Turan type inequalities for generalized complete elliptic integrals
    Baricz, Arpad
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) : 895 - 911
  • [8] Sharp estimates for complete elliptic integrals
    Qiu, SL
    Vamanamurthy, MK
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) : 823 - 834
  • [9] Turán type inequalities for generalized complete elliptic integrals
    Árpád Baricz
    [J]. Mathematische Zeitschrift, 2007, 256
  • [10] Some Inequalities For Complete Elliptic Integrals
    Yin, Li
    Qi, Feng
    [J]. APPLIED MATHEMATICS E-NOTES, 2014, 14 : 193 - 199