Efficient electrochemical conversion of CO2 into formic acid using colloidal NiCo@rGO catalyst

被引:5
|
作者
Arsalan, Muhammad [1 ]
Ewis, Dina [1 ]
Ba-Abbad, Muneer M. [1 ]
Khaled, Mazen [2 ]
Amhamed, Abdulkarem [3 ]
El-Naas, Muftah H. [1 ]
机构
[1] Qatar Univ, Gas Proc Ctr, Coll Engn, POB 2713, Doha, Qatar
[2] Qatar Univ, Coll Arts & Sci, Dept Chem & Earth Sci, Doha POB 2713, Qatar
[3] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, Doha, Qatar
关键词
Electrochemical conversion; NiCo@rGO; CO2; reduction; Formic acid; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; REDUCTION; FORMATE; OXIDE; HYDROGEN;
D O I
10.1016/j.rineng.2024.101824
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple approach was used to synthesize a catalyst based on colloidal NiCo with rGO support. The catalyst was uniformly deposited on acid -treated Sn foil using drop -casting method. The prepared NiCo@rGO catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The XRD measurements confirmed the development of a homogenously immersed structure with a specific NiCo composition. The different ratios of Ni and Co in the NiCo@rGO catalyst were further confirmed by XPS and SEM-EDX. The catalyst was tested for the electrochemical reduction of CO2 to produce formic acid (HCOOH) and resulted in a significantly higher faradaic efficiency at -50 mA current compared to the simple Co nanoparticle, rGO, Sn foil, Ni nanoparticles, and NiCo composite. The colloidal NiCo bimetallic structure, combined with the rGO support on the treated Sn foil, played an important role in enhancing the catalytic activity and selectivity towards formic acid. When comparing the NiCo@rGO catalyst with other catalysts, especially Ni, Co, Sn foil, NiCo, and rGO, the NiCo@rGO catalyst showed superior CO2 electrochemical chemical reduction performance. The results suggest that the synergic effect of combining Ni with Co along with using acid -treated Sn foil as a support is responsible for the high activity towards formic acid production. The experimental results demonstrated the formation of formic acid with low energy consumption and good faradic efficiency.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrochemical conversion of CO2 to formic acid under reduced CO2 concentration
    Yang, Hongzhou
    Kaczur, Jerry
    Masel, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
    Leiming Hu
    Jacob A. Wrubel
    Carlos M. Baez-Cotto
    Fry Intia
    Jae Hyung Park
    Arthur Jeremy Kropf
    Nancy Kariuki
    Zhe Huang
    Ahmed Farghaly
    Lynda Amichi
    Prantik Saha
    Ling Tao
    David A. Cullen
    Deborah J. Myers
    Magali S. Ferrandon
    K. C. Neyerlin
    Nature Communications, 14 (1)
  • [3] A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
    Hu, Leiming
    Wrubel, Jacob A.
    Baez-Cotto, Carlos M.
    Intia, Fry
    Park, Jae Hyung
    Kropf, Arthur Jeremy
    Kariuki, Nancy
    Huang, Zhe
    Farghaly, Ahmed
    Amichi, Lynda
    Saha, Prantik
    Tao, Ling
    Cullen, David A.
    Myers, Deborah J.
    Ferrandon, Magali S.
    Neyerlin, K. C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes
    Yang, Hongzhou
    Kaczur, Jerry J.
    Sajjad, Syed Dawar
    Masel, Richard I.
    JOURNAL OF CO2 UTILIZATION, 2017, 20 : 208 - 217
  • [5] Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst
    Kortlever, Ruud
    Balemans, Collin
    Kwon, Youngkook
    Koper, Marc T. M.
    CATALYSIS TODAY, 2015, 244 : 58 - 62
  • [6] Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor
    Moreno, Daniel
    Omosebi, Ayokunle
    Jeon, Byoung Wook
    Abad, Keemia
    Kim, Yong Hwan
    Thompson, Jesse
    Liu, Kunlei
    JOURNAL OF CO2 UTILIZATION, 2023, 70
  • [7] Sulfide-Derived Copper for Electrochemical Conversion of CO2 to Formic Acid
    Phillips, Katherine R.
    Katayama, Yu
    Hwang, Jonathan
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (15): : 4407 - 4412
  • [8] Enhanced electrochemical conversion of CO2 into formic acid using PbSO4/ AtSn electrode: Catalyst synthesis and process optimization
    Arsalan, Muhammad
    Ewis, Dina
    Mahmud, Nafis
    Ba-Abbad, Muneer M.
    Khaled, Mazen
    El-Naas, Muftah H.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [9] On the modelling of multidisciplinary electrochemical systems with application on the electrochemical conversion of CO2 to formate/formic acid
    Georgopoulou, Chariklia
    Jain, Swati
    Agarwal, Arun
    Rode, Edward
    Dimopoulos, George
    Sridhar, Narasi
    Kakalis, Nikolaos
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 93 : 160 - 170
  • [10] Hydrogenation of CO2 into formic acid using a palladium catalyst on chitin
    Song, Hongbing
    Zhang, Na
    Zhong, Caiyun
    Liu, Zong
    Xiao, Meng
    Gai, Hengjun
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (17) : 9170 - 9177