N - k Static Security Assessment for Power Transmission System Planning Using Machine Learning

被引:0
|
作者
Alvarez, David L. [1 ,2 ]
Gaha, Mohamed [1 ]
Prevost, Jacques [1 ]
Cote, Alain [1 ]
Abdul-Nour, Georges [2 ]
Meango, Toualith Jean-Marc [1 ]
机构
[1] Hydroquebecs Res Inst IREQ, Varennes, PQ J3X 1P7, Canada
[2] Univ Quebec Trois Rivieres UQTR, Dept Genie Ind, Trois Rivieres, PQ G8Z 4M3, Canada
关键词
load shedding optimal power flow; machine learning; static security assessment; transmission system planning; RELIABILITY; CONTINGENCY; FRAMEWORK; N-1;
D O I
10.3390/en17020292
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a methodology for static security assessment of transmission network planning using machine learning (ML). The objective is to accelerate the probabilistic risk assessment of the Hydro-Quebec (HQ) Trans & Eacute;nergie transmission grid. The model takes the expected power supply and the status of the elements in a N - k contingency scenario as inputs. The output is the reliability metric Expecting Load Shedding Cost (ELSC). To train and test the regression model, stochastic data are performed, resulting in a set of N - k and k = {1,2, 3} contingency scenarios used as inputs. Subsequently, the output is computed for each scenario by performing load shedding using an optimal power flow algorithm, with the objective function of minimizing ELSC. Experimental results on the well-known IEEE-39 bus test system and PEGASE-1354 system demonstrate the potential of the proposed methodology in generalizing ELSC during an N - k contingency. For up to k = 3 the coefficient of determination (R2) obtained was close to 98% for both case studies, achieving a speed-up of over four orders of magnitude with the use of a Multilayer Perceptron (MLP). This approach and its results have not been addressed in the literature, making this methodology a contribution to the state of the art.
引用
收藏
页数:17
相关论文
共 50 条