Numerical simulation of hydraulic fracture propagation under energy supplement conditions

被引:0
|
作者
Dong, Jingfeng [1 ]
Qu, Hongyan [2 ,3 ,4 ]
Zhang, Jingchun [1 ]
Han, Feipeng [1 ]
Zhou, Fujian [2 ,3 ,4 ]
Shi, Peize [2 ,3 ]
Shi, Jilong [2 ,3 ]
Yu, Tianxi [1 ]
机构
[1] PetroChina Xinjiang Oilfield Co, Engn Technol Res Inst, Karamay, Xinjiang, Peoples R China
[2] China Univ Petr, Natl Key Lab Petr Resources & Engn, Beijing, Peoples R China
[3] China Univ Petr, Unconvent Petr Res Inst, Beijing, Peoples R China
[4] China Univ Petr, Coll Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
energized fracturing; hydraulic fractures; numerical simulation; fluid-solid coupling; ABAQUS; BRITTLE; XFEM;
D O I
10.3389/feart.2023.1269159
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
After the long-term production, due to the influence of low-pressure and low-stress fields in the near-well area, the reversion and propagation of new fractures after temporary plugging is short. It is difficult for the new fracture to extend to the remaining oil enrichment areas on both sides of the primary fractures, resulting in a low increase in the bandwidth of the fracture group after repeated fracturing, which affects the reservoir utilization. In the early stage of repeated fracturing, a large amount of pre-fracturing fluid is injected to supplement the energy of the fractures and rapidly increase the pore pressure in the local range, weakening rock strength and change the pore structure. In addition, the combination of energy replenishment and reservoir stimulation, coupled reconstruction of the seepage field and stress field, promotes the effective propagation of new fractures. However, in the process of increasing formation energy, the propagation law of hydraulic fractures and natural fractures is not clear. In this paper, the model of tight sandstone reservoir in the HQ block of Ordos Basin was established with the finite element software ABAQUS, based on the effective stress principle and the theoretical method of fluid-solid coupling numerical simulation. The propagation of a single hydraulic fracture and the interaction between hydraulic fracture and natural fracture under the condition of energy increase was investigated to better guide the field operation. The results show that for every 1 MPa pressure increase in a single hydraulic fracture, the fracture length increases by 0.62 m and the maximum fracture width decreases by 0.09 mm. When the formation energy increases by 6 MPa, the time for the hydraulic fracture to reach the intersection point with the natural fracture is shortened by 10 %, and the length of the natural fracture is 2.16 times compared with the case of 3 MPa energy increase.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical Simulation of Hydraulic Fracture Crack Propagation
    Akulich, A. V.
    Zvyagin, A. V.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2008, 63 (01) : 6 - 12
  • [2] Numerical simulation of hydraulic fracture crack propagation
    Akulich A.V.
    Zvyagin A.V.
    Moscow University Mechanics Bulletin, 2008, 63 (1) : 6 - 12
  • [3] Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures
    Wang H.
    Wang G.
    Yue G.
    Gan H.
    Dizhi Xuebao/Acta Geologica Sinica, 2020, 94 (07): : 2124 - 2130
  • [4] Numerical simulation of hydraulic fracture propagation in a shallow reservoir
    Xiao, Hui
    Tao, Hong-Sheng
    Qiao, Hong-Jun
    Mu, Jing-Fu
    Electronic Journal of Geotechnical Engineering, 2015, 20 (26): : 13037 - 13050
  • [5] Numerical simulation of hydraulic fracture propagation in conglomerate reservoirs
    Shi, Xian
    Qin, Yong
    Xu, Hongxing
    Feng, Qihong
    Wang, Sen
    Xu, Peng
    Han, Songcai
    ENGINEERING FRACTURE MECHANICS, 2021, 248
  • [6] Numerical simulation of hydraulic fracture propagation in deep reservior
    Liu W.
    Yao J.
    Zeng Q.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49 (02): : 223 - 233
  • [7] Poromechanical Modeling and Numerical Simulation of Hydraulic Fracture Propagation
    Zhang, Xinsheng
    Cao, Yunxing
    Wang, Li
    Guo, Xiaohui
    ACS OMEGA, 2022, 7 (29): : 25003 - 25012
  • [8] Numerical Simulation of the Influence of Natural Fractures on Hydraulic Fracture Propagation
    Song Yaobin
    Lu Weiyong
    He Changchun
    Bai Erhu
    GEOFLUIDS, 2020, 2020
  • [9] Numerical simulation of Hydraulic Fracture Propagation in Heterogeneous Unconventional Reservoir
    Liu, Chunting
    Li, Mingzhong
    Hao, Lihua
    Hu, Hang
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017), 2017, 1890
  • [10] Numerical Simulation of Hydraulic Fracture Propagation in Unconsolidated Sandstone Reservoirs
    Xin, Yicheng
    Yuan, Zheng
    Gao, Yancai
    Wang, Tao
    Wang, Haibiao
    Yan, Min
    Zhang, Shun
    Shi, Xian
    PROCESSES, 2024, 12 (10)