Improved Ionospheric Total Electron Content Maps over China Using Spatial Gridding Approach

被引:0
|
作者
Song, Fucheng [1 ]
Shi, Shuangshuang [2 ,3 ]
机构
[1] Linyi Univ, Coll Resources & Environm, Shandong Prov Key Lab Water & Soil Conservat & Env, Linyi 276000, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Resources & Environm Informat Engn, Xuzhou 221116, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
China ionosphere maps; total electron content; spatial gridding approach; particle swarm optimization algorithm; artificial neural network; MODEL; TEC; GPS; VALIDATION;
D O I
10.3390/atmos15030351
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Precise regional ionospheric total electron content (TEC) models play a crucial role in correcting ionospheric delays for single-frequency receivers and studying variations in the Earth's space environment. A particle swarm optimization neural network (PSO-NN)-based model for ionospheric TEC over China has been developed using a long-term (2008-2021) ground-based global positioning system (GPS), COSMIC, and Fengyun data under geomagnetic quiet conditions. In this study, a spatial gridding approach is utilized to propose an improved version of the PSO-NN model, named the PSO-NN-GRID. The root-mean-square error (RMSE) and mean absolute error (MAE) of the TECs estimated from the PSO-NN-GRID model on the test data set are 3.614 and 2.257 TECU, respectively, which are 7.5% and 5.5% smaller than those of the PSO-NN model. The improvements of the PSO-NN-GRID model over the PSO-NN model during the equinox, summer, and winter of 2015 are 0.4-22.1%, 0.1-12.8%, and 0.2-26.2%, respectively. Similarly, in 2019, the corresponding improvements are 0.5-13.6%, 0-10.1%, and 0-16.1%, respectively. The performance of the PSO-NN-GRID model is also verified under different solar activity conditions. The results reveal that the RMSEs for the TECs estimated by the PSO-NN-GRID model, with F10.7 values ranging within [0, 80), [80, 100), [100, 130), [130, 160), [160, 190), [190, 220), and [220, +), are, respectively, 1.0%, 2.8%, 4.7%, 5.5%, 10.1%, 9.1%, and 28.4% smaller than those calculated by the PSO-NN model.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Estimation of the daily mean ionospheric total electron content using Global Ionospheric Maps
    Erol, CB
    Tanyer, SG
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1287 - 1289
  • [2] Ionospheric support of HF radiocommunication using maps of total electron content
    B. V. Troitsky
    M. Yu. Ortikov
    K. A. Lobanov
    A. A. Vlasov
    A. I. Pogorel’tsev
    Geomagnetism and Aeronomy, 2007, 47 : 389 - 394
  • [3] Ionospheric support of HF radiocommunication using maps of total electron content
    Troitsky, B. V.
    Ortikov, M. Yu.
    Lobanov, K. A.
    Vlasov, A. A.
    Pogorel'tsev, A. I.
    GEOMAGNETISM AND AERONOMY, 2007, 47 (03) : 389 - 394
  • [4] Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe
    Badeke, Ronny
    Borries, Claudia
    Hogue, Mainul M.
    Minkwitz, David
    ADVANCES IN SPACE RESEARCH, 2018, 61 (12) : 2881 - 2890
  • [5] Ionospheric total electron content: Spatial patterns of variability
    Lean, J. L.
    Meier, R. R.
    Picone, J. M.
    Sassi, F.
    Emmert, J. T.
    Richards, P. G.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (10) : 10367 - 10402
  • [6] Variation of the Ionospheric Total Electron Content over Wuhan
    Wang Bo
    Wang Weimin
    Zhang Ren
    Cao Ke
    2011 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE (ICMI 2011), PT 2, 2011, 4 : 171 - +
  • [7] Improved Modeling of Global Ionospheric Total Electron Content Using Prior Information
    Wang, Cheng
    Shi, Chuang
    Fan, Lei
    Zhang, Hongping
    REMOTE SENSING, 2018, 10 (01)
  • [8] Using Deep Learning to Map Ionospheric Total Electron Content over Brazil
    Silva, Andre
    Moraes, Alison
    Sousasantos, Jonas
    Maximo, Marcos
    Vani, Bruno
    Faria, Clodoaldo
    REMOTE SENSING, 2023, 15 (02)
  • [9] Spatial and Temporal Variations of Polar Ionospheric Total Electron Content over Nearly Thirteen Years
    Xi, Hui
    Jiang, Hu
    An, Jiachun
    Wang, Zemin
    Xu, Xueyong
    Yan, Houxuan
    Feng, Can
    SENSORS, 2020, 20 (02)
  • [10] Statistical Characteristics of Total Electron Content Intensifications on Global Ionospheric Maps
    Meng, X.
    Verkhoglyadova, O. P.
    Chapman, S. C.
    Watkins, N. W.
    Cafolla, M.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2024, 22 (01):