Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers

被引:4
|
作者
Kang, Zhenye [1 ]
Yang, Gaoqiang [2 ]
Mo, Jingke [3 ]
机构
[1] Hainan Univ, Sch Chem & Chem Engn, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Dept Energy & Power Engn, Changsha 410082, Peoples R China
[3] Fudan Univ, Dept Aeronaut & Astronaut, Shanghai 200433, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Electrodes; Water splitting; Oxygen evolution reaction; Membrane electrode assembly; Proton exchange membrane water electrolysis; PERFORMANCE; HYDROGEN; NANOPARTICLES; CATALYST; IR; ELECTROCATALYSTS; EFFICIENCY; STABILITY; LAYERS; CELLS;
D O I
10.1016/j.renene.2024.120159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Noble metal electrocatalysts are highly preferred for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolysis cell (PEMWE) due to their exceptional catalytic activity and stability. This study proposes a novel thin electrode (NTE) design to enhance the performance of noble metal electrocatalysts for the OER in PEMWE. The NTE utilizes a thin porous transport layer for the direct deposition of Iridium (Ir). Unlike conventional gas diffusion electrodes with deep porous structures that underutilize the catalyst due to limited triple-phase boundary conditions, the flat NTEs with straight-through pores overcome this restriction. The paper compares two deposition methods, electroplating and sputter coating. The in-situ electrochemical properties of NTEs with varying Ir loadings (0.06-1.01 mg cm(-2)) are investigated. The electroplated NTE demonstrates excellent mass activity, achieving 5.05 A mg(-1) at 1.6 V and 80 degrees C. The NTE exhibits a simple fabrication process and low cost while significantly improving catalyst mass activity. Additionally, the NTE reduces electrode thickness from hundreds of micrometers to only 25 mu m. This concept holds great promise for the future advancement of compact and high-efficiency PEMWE electrodes, resulting in reduced cost, volume, and mass of both the electrode itself and the overall system.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Advances in Oxygen Evolution Electrocatalysts for Proton Exchange Membrane Water Electrolyzers
    Chen, Zhichao
    Guo, Lei
    Pan, Lun
    Yan, Tianqing
    He, Zexing
    Li, Yue
    Shi, Chengxiang
    Huang, Zhen-Feng
    Zhang, Xiangwen
    Zou, Ji-Jun
    ADVANCED ENERGY MATERIALS, 2022, 12 (14)
  • [2] Magnetically modified electrocatalysts for oxygen evolution reaction in proton exchange membrane (PEM) water electrolyzers
    Kaya, Mehmet Fatih
    Demir, Nesrin
    Rees, Neil V.
    El-Kharouf, Ahmad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (40) : 20825 - 20834
  • [3] Hollow Iridium-Based Catalysts for the Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzers
    Peron, J.
    Faustini, M.
    Giraud, M.
    Roziere, J.
    Jones, D.
    Boissiere, C.
    Tard, C.
    POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08): : 1077 - 1084
  • [4] Engineering Iridium-Based Oxygen Evolution Reaction Electrocatalysts for Proton Exchange Membrane Water Electrolyzers
    Wang, Shuang
    Shen, Tao
    Yang, Chang
    Luo, Guanyu
    Wang, Deli
    ACS CATALYSIS, 2023, 13 (13) : 8670 - 8691
  • [5] Detecting and modeling oxygen bubble evolution and detachment in proton exchange membrane water electrolyzers
    Garcia-Navarro, J. C.
    Schulze, M.
    Friedrich, K. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (50) : 27190 - 27203
  • [6] A brief introduction of electrode fabrication for proton exchange membrane water electrolyzers
    Lin, Xinlong
    Seow, Justin Zhu Yeow
    Xu, Zhichuan J.
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [7] A Solid Electrolyte RHE for Electrode Diagnosis of Proton Exchange Membrane Water Electrolyzers
    Huang, Meiquan
    Lao, Kejie
    Ma, Ling
    Tao, Jiawei
    Zhuang, Xinlong
    Hu, Tian
    Pan, Yaping
    Liu, Han
    Wen, Linrui
    Xu, Shuwen
    Liu, Xinru
    Wu, Yichun
    Li, Shuirong
    Tao, Hua Bing
    Zheng, Nanfeng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39408 - 39417
  • [8] SrTi1-xIrxO3 solid solution as a robust electrocatalyst for oxygen evolution reaction in proton exchange membrane water electrolyzers
    Yan, Cheng
    He, Xiyu
    Du, Yunzhu
    Li, Jing
    Su, Yongjian
    Yin, Jiewei
    Hu, Qiaodan
    Yang, Fan
    Zhang, Junliang
    International Journal of Hydrogen Energy, 2025, 97 : 1365 - 1374
  • [9] Rational electrode design for low-cost proton exchange membrane water electrolyzers
    Yuan, Shu
    Zhao, Congfan
    Li, Huiyuan
    Shen, Shuiyun
    Yan, Xiaohui
    Zhang, Junliang
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (03):
  • [10] Anode Engineering for Proton Exchange Membrane Water Electrolyzers
    Qiu, Chang
    Xu, Zikai
    Chen, Feng-Yang
    Wang, Haotian
    ACS CATALYSIS, 2024, 14 (02) : 921 - 954