Subset scanning for multi-trait analysis using GWAS summary statistics

被引:0
|
作者
Cao, Rui [1 ]
Olawsky, Evan [1 ]
McFowland III, Edward [2 ]
Marcotte, Erin [3 ]
Spector, Logan [3 ]
Yang, Tianzhong [1 ,3 ,4 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat & Hlth Data Sci, Minneapolis, MN 55414 USA
[2] Harvard Univ, Harvard Business Sch, Technol & Operat Management, Boston, MA 02163 USA
[3] Univ Minnesota, Dept Pediat, Div Epidemiol & Clin Res, Minneapolis, MN 55454 USA
[4] Univ Minnesota, Div Biostat & Hlth Data Sci, 2221 Univ Ave SE, Minneapolis, MN 55414 USA
关键词
ASSOCIATION; SARCOMA; BIOBANK;
D O I
10.1093/bioinformatics/btad777
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Multi-trait analysis has been shown to have greater statistical power than single-trait analysis. Most of the existing multi-trait analysis methods only work with a limited number of traits and usually prioritize high statistical power over identifying relevant traits, which heavily rely on domain knowledge.Results To handle diseases and traits with obscure etiology, we developed TraitScan, a powerful and fast algorithm that identifies potential pleiotropic traits from a moderate or large number of traits (e.g. dozens to thousands) and tests the association between one genetic variant and the selected traits. TraitScan can handle either individual-level or summary-level GWAS data. We evaluated TraitScan using extensive simulations and found that it outperformed existing methods in terms of both testing power and trait selection when sparsity was low or modest. We then applied it to search for traits associated with Ewing Sarcoma, a rare bone tumor with peak onset in adolescence, among 754 traits in UK Biobank. Our analysis revealed a few promising traits worthy of further investigation, highlighting the use of TraitScan for more effective multi-trait analysis as biobanks emerge. We also extended TraitScan to search and test association with a polygenic risk score and genetically imputed gene expression.Availability and implementation Our algorithm is implemented in an R package "TraitScan" available at https://github.com/RuiCao34/TraitScan.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics
    Guangsheng Pei
    Hua Sun
    Yulin Dai
    Xiaoming Liu
    Zhongming Zhao
    Peilin Jia
    BMC Genomics, 20
  • [2] Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics
    Pei, Guangsheng
    Sun, Hua
    Dai, Yulin
    Liu, Xiaoming
    Zhao, Zhongming
    Jia, Peilin
    BMC GENOMICS, 2019, 20 (Suppl 1)
  • [3] Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2018, 50 : 229 - 237
  • [4] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Lan Luo
    Judong Shen
    Hong Zhang
    Aparna Chhibber
    Devan V. Mehrotra
    Zheng-Zheng Tang
    Nature Communications, 11
  • [5] Multi-trait analysis of genome-wide association summary statistics using MTAG
    Turley, Patrick
    Walters, Raymond K.
    Maghzian, Omeed
    Okbay, Aysu
    Lee, James J.
    Fontana, Mark Alan
    Tuan Anh Nguyen-Viet
    Wedow, Robbee
    Zacher, Meghan
    Furlotte, Nicholas A.
    Magnusson, Patrik
    Oskarsson, Sven
    Johannesson, Magnus
    Visscher, Peter M.
    Laibson, David
    Cesarini, David
    Neale, Benjamin M.
    Benjamin, Daniel J.
    NATURE GENETICS, 2018, 50 (02) : 229 - +
  • [6] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Luo, Lan
    Shen, Judong
    Zhang, Hong
    Chhibber, Aparna
    Mehrotra, Devan, V
    Tang, Zheng-Zheng
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Author Correction: Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2019, 51 : 1295 - 1295
  • [8] Publisher Correction: Multi-trait analysis of genome-wide association summary statistics using MTAG
    Patrick Turley
    Raymond K. Walters
    Omeed Maghzian
    Aysu Okbay
    James J. Lee
    Mark Alan Fontana
    Tuan Anh Nguyen-Viet
    Robbee Wedow
    Meghan Zacher
    Nicholas A. Furlotte
    Patrik Magnusson
    Sven Oskarsson
    Magnus Johannesson
    Peter M. Visscher
    David Laibson
    David Cesarini
    Benjamin M. Neale
    Daniel J. Benjamin
    Nature Genetics, 2019, 51 : 1190 - 1190
  • [9] An adaptive and robust method for multi-trait analysis of genome-wide association studies using summary statistics
    Deng, Qiaolan
    Song, Chi
    Lin, Shili
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (06) : 681 - 690
  • [10] A multi-trait evaluation of network propagation for GWAS results
    Bruncsics, Bence
    Antal, Peter
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 102 - 107