ON THE DENSITY OF MULTIVARIATE POLYNOMIALS

被引:0
|
作者
Kroo, Andras [1 ,2 ]
Szabados, Jozsef [1 ]
机构
[1] Hungarian Acad Sci, Alfred Reny Inst Math, H-1053 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Anal, H-1111 Budapest, Hungary
关键词
Approximation by multivariate weighted polynomials; varying weights; Freud type weights; multivariate incomplete polynomials; density; APPROXIMATION;
D O I
10.1090/proc/14882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider multivariate approximation by weighted polynomials of the form w gamma n (X)pn(X), where pn is a multivariate polynomial of degree at most n, w is a given nonnegative weight with nonempty zero set, and-yn up arrow infinity. We study the question if every continuous function vanishing on the zero set of w is a uniform limit of weighted polynomials w gamma n (X)pn(X). It turns out that for various classes of weights in order for this approximation property to hold it is necessary and sufficient that-yn = o(n).
引用
收藏
页码:1921 / 1935
页数:15
相关论文
共 50 条
  • [1] Density of multivariate homogeneous polynomials on star like domains
    Kroo, Andras
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 239 - 251
  • [2] ON A PROBLEM OF PINKUS AND WAJNRYB REGARDING DENSITY OF MULTIVARIATE POLYNOMIALS
    Mckinley, Tom
    Shekhtman, Boris
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 185 - 190
  • [3] FACTORING OF MULTIVARIATE POLYNOMIALS
    VIRY, G
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1980, 14 (02): : 209 - 223
  • [4] MULTIVARIATE ORTHOGONAL POLYNOMIALS
    KRAMER, KH
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (01): : 309 - &
  • [5] Pseudozeros of multivariate polynomials
    Hoffman, JW
    Madden, JJ
    Zhang, H
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 975 - 1002
  • [6] ON MULTIVARIATE ORTHOGONAL POLYNOMIALS
    XU, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) : 783 - 794
  • [7] Multivariate Chebyshev polynomials
    Lyakhovsky, V. D.
    Uvarov, Ph V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (12)
  • [8] Pseudofactors of multivariate polynomials
    Huang, Yuzhen
    Wu, Wenda
    Sletter, Hans J.
    Zhi, Lihong
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2000, : 161 - 168
  • [9] On Multivariate Bernstein Polynomials
    Foupouagnigni, Mama
    Mouafo Wouodjie, Merlin
    MATHEMATICS, 2020, 8 (09)
  • [10] On multivariate minimal polynomials
    Bloom, T
    Calvi, JP
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 129 : 417 - 431